Bir AP'nin dördüncü terimi, yedinci terimi üçüncü terimin 1 ile iki katını geçtiği üç katına eşittir. İlk terimi ve ortak farkı buluyor musunuz?
A = 2/13 d = -15/13 T_4 = 3 T_7 ......... (1) T_4 - 2T_3 = 1 ........ (2) T_n = a + (n- 1) d T_4 = a + 3d T_7 = a + 6d T_3 = a + 2d (1) denklemindeki değiştirme değerleri, a + 3d = 3a + 18d = 2a + 15d = 0 .......... .... (3) (2) denklemindeki değerleri değiştirme, a + 3d - (2a + 4d) = 1 = a + 3d - 2a - 4d = 1 -a -d = 1 a + d = -1. ........... (4) (3) ve (4) denklemlerini aynı anda çözdüğümüzde, d = 2/13 a = -15/13
Belirli bir radyoaktif maddenin yarı ömrü 85 gündür. Malzemenin ilk miktarı 801 kg'lık bir kütleye sahiptir. Bu malzemenin çürümesini modelleyen üstel bir işlevi ve 10 gün sonra ne kadar radyoaktif madde kaldığını nasıl yazıyorsunuz?
M_0 = "İlk kütle" = 801kg "" t = 0 m (t) = "t" kütlesinde "" Üstel fonksiyon ", m (t) = m_0 * e ^ (kt) ... (1) "burada" k = "sabit" "Yarı ömür" = 85 gün => m (85) = m_0 / 2 Şimdi t = 85 gün sonra m (85) = m_0 * e ^ (85k) => m_0 / 2 = m_0 * e ^ (85k) => e ^ k = (1/2) ^ (1/85) = 2 ^ (- 1/85) m_0 ve e ^ k değerlerini (1) içine koyarak m (t) değerini alırız = 801 * 2 ^ (- t / 85) Bu, üstel biçimde m (t) = 801 * e ^ (- (tlog2) / 85) olarak da yazılabilen bir işlevdir. 10 gün m (10) = 801 * 2
Bayan Ruiz'in sınıfı bir hafta boyunca konserve ürünleri topladı. Pazartesi günü 30 konserve ürünü topladılar. Her gün, bir önceki günden 15 daha fazla konserve ürünü topladılar. Cuma günü kaç tane konserve ürünü topladılar?
Bunu çözmek için önce açık bir formül oluşturun. Açık bir formül, n'nin tüm gerçek sayıları temsil ettiği n numaralı terime göre bir dizideki herhangi bir terimi temsil eden formüldür.Bu nedenle, bu durumda, açık formül 15n + 30 olacaktır. Salı, pazartesiden sonraki ilk gün olduğu gibi, salı günündeki konserve ürünlerinin miktarını hesaplamak istiyorsanız, sadece 1 ile n'yi değiştirin. , ikame n 4 ile. 15 (4) + 30 Cevabınız 90 olmalıdır. Dolayısıyla, Cuma günü 90 konserve ürünü topladılar.