Dikdörtgen bir prizmanın yüzey alanı için formül S = 2 / w + 2wh + 2lh'dir. W için nasıl çözülür?

Dikdörtgen bir prizmanın yüzey alanı için formül S = 2 / w + 2wh + 2lh'dir. W için nasıl çözülür?
Anonim

Cevap:

Bu, dikdörtgen bir prizmanın yüzey alanı için yanlış formüldür. Doğru formül:

#S = 2 (wl + wh + lh) #

Bu formülü çözmek için bir işlem için aşağıya bakın # # w

Açıklama:

İlk önce denklemin her bir tarafını bölün #color (kırmızı) (2) # denklemi dengede tutarken #parentezi ortadan kaldırmak için:

# S / renk (kırmızı) (2) = (2 (wl + wh + lh)) / renk (kırmızı) (2) #

# S / 2 = (renkli (kırmızı) (iptal (renkli (siyah) (2)))) (wl + wh + lh)) / iptal (renkli (kırmızı) (2)) #

# S / 2 = wl + wh + lh #

Sonra, çıkart #color (kırmızı) (lh) # denklemin her iki tarafından # # w denklemi dengeli tutarken terimler:

# S / 2 - renkli (kırmızı) (lh) = wl + wh + lh - renkli (kırmızı) (lh) #

# S / 2 - lh = wl + wh + 0 #

# S / 2 - lh = wl + wh #

Sonra, faktör a # # w Denklemin sağ tarafındaki her bir terimden:

# S / 2 - lh = w (l + s) #

Şimdi, denklemin her bir tarafını bölün #renk (kırmızı) ((l + s)) # çözmek için # # w denklemi dengeli tutarken:

# (S / 2 - lh) / renk (kırmızı) ((l + s)) = (w (l + s)) / renk (kırmızı) ((l + s)) #

# (S / 2) / renk (kırmızı) ((l + s)) - (lh) / renk (kırmızı) ((l + s)) = (wcolor (kırmızı) (iptal (renk (siyah)) ((l + h))))) / iptal et (renkli (kırmızı) ((l + s))) #

# S / (2 (l + s)) - (lh) / (l + s) = w #

#w = S / (2 (l + s)) - (lh) / (l + s) #

Bunu şu şekilde de yeniden yazabiliriz:

#w = S / (2 (l + s)) - (2/2 xx (lh) / (l + s)) #

#w = S / (2 (l + s)) - (2 lh) / (2 (l + s)) #

#w = (S - 2Ih) / (2 (l + s)) #