Varsa, f (x) = (1-e ^ -x) / x'deki asimptot (lar) ve delik (ler) nedir?
Tek asimptot x = 0'dır. Elbette, x 0 olamaz, aksi takdirde f (x) tanımsız kalır. Ve işte grafikteki 'delik'.
Varsa, f (x) = (1-x) ^ 2 / (x ^ 2-1) 'deki asimptot (lar) ve delik (ler) nedir?
F (x), yatay bir asimptote y = 1, dikey bir asimptote x = -1 ve x = 1'de bir deliğe sahiptir. > f (x) = (1-x) ^ 2 / (x ^ 2-1) = (x-1) ^ 2 / ((x-1) (x + 1)) = (x-1) / ( x + 1) = (x + 1-2) / (x + 1) = 1-2 / (x + 1) hariç tutularak x! = 1 olarak x -> + - oo terimi 2 / (x + 1) -> 0, yani f (x) yatay asimptote y = 1 olur. X = -1 olduğunda, f (x) 'in paydası sıfırdır, ancak pay sıfır değildir. Yani f (x), dikey bir asimptote sahip x = -1. X = 1 olduğunda, hem f (x) hem paydası hem de payda sıfırdır, yani f (x) tanımsızdır ve x = 1'de bir deliğe sahiptir. Lim_ (x-> 1) f (x) = 0 tanımlanmış olduğuna di
Varsa, f (x) = 1 / ((x-3) (x ^ 3-x ^ 2-x + 1) 'deki asimptot (lar) ve delik (ler) nedir?
Asimptotlar: x = 3, -1, 1 y = 0 delik: yok f (x) = 1 / ((x-3) (x ^ 3-x ^ 2-x + 1)) f (x) = 1 / ((x-3) (x ^ 2 (x-1) -1 (x-1)) f (x) = 1 / ((x-3) (x ^ 2-1) (x-1)) f (x) = 1 / ((x-3) (x + 1) (x-1) (x-1)); x! = 3, -1,1; y! = 0 Bu işlev için delik yok pay ve paydada görünen ortak parantezli polinom bulunmadığından paydadaki her parantezli polinom için belirtilmesi gereken sadece kısıtlamalar vardır.Bu kısıtlamalar dikey asimptotlardır, ayrıca yatay bir asimptot olduğunu da unutmayın. = 0.:., Asimptotlar x = 3, x = -1, x = 1 ve y = 0'dır.