Cevap:
İstenilen çizginin denklemi
Açıklama:
Çizginin denklemi
Dolayısıyla eğimi
İki dik çizgiden oluşan eğimlerin ürünü olarak
Bu çizgi geçerken (3,4),
Dolayısıyla istenen çizginin denklemi
Bir çizginin denklemi 2x + 3y - 7 = 0, bul: - (1) çizginin eğimi (2) verilen çizgiye dik ve çizginin kesişme noktasından geçen çizginin denklemi x-y + 2 = 0 ve 3x + y-10 = 0?
-3x + 2y-2 = 0 renk (beyaz) ("ddd") -> renk (beyaz) ("ddd") y = 3 / 2x + 1 İlk prensiplerin nasıl çalıştığını gösteren çok detaylı ilk bölüm. Bunlara bir kez alışıp kısayolları kullanarak çok daha az satır kullanacaksınız. color (blue) ("İlk denklemlerin kesişimini belirleyin") x-y + 2 = 0 "" ....... Denklem (1) 3x + y-10 = 0 "" .... Denklem ( 2) Eqn (1) 'in her iki tarafından -y + 2 = -x veren x'i çıkar. Her iki tarafı da (-1) + y-2 = + x "" .......... ile eşitle (1_a) ) Eqn (2) renkli (yeşil) (3 renk (kırmızı) (x) +
(6, -5) 'den geçen y = 7 / 16x' e dik çizginin denklemi nedir?
Y = -16 / 7x + 61/7> "bir çizginin" renkli (mavi) "eğim-kesişme biçiminde denklemi" dir. • renk (beyaz) (x) y = mx + b "ki burada m eğimdir ve b y-kesişimi" y = 7 / 16x "bu şekilde" "m eğimli" şeklindedir "bir çizgi" 7/16 " m eğimi ile sonra "" kendisine dik "" bir çizgi eğimi "• renkli (beyaz) (x) m_ (renkli (kırmızı)" dikey ") = - 1 / m rArrm _ (" dik ") = - 1 / ( 7/16) = - 16/7 rArry + 5 = -16 / 7 (x-6) larrcolor (mavi) "nokta eğim formu" rArry + 5 = -16 / 7x + 96/7 rArry = -16 /
Aşağıdaki ifadeyi kanıtlayın. ABC'nin herhangi bir dik üçgen, C noktasındaki dik açı olmasına izin verin. C'den hipoteneuse çizilen yükseklik, üçgeni birbirine ve orijinal üçgene benzeyen iki dik üçgene böler?
Aşağıya bakınız. Soruya göre, DeltaABC, / _C = 90 ^ @ ile dik bir üçgendir ve CD, hipotenüs AB'nin rakımıdır. Kanıt: Farz edelim ki / _ABC = x ^ @. Öyleyse, angleBAC = 90 ^ @ - x ^ @ = (90 - x) ^ @ Şimdi CD'ye dik AB. Böylece, angleBDC = angleADC = 90 ^ @. DeltaCBD'de angleBCD = 180 ^ @ - angleBDC - angleCBD = 180 ^ @ - 90 ^ @ - x ^ @ = (90 -x) ^ @ Benzer şekilde, angleACD = x ^ @. Şimdi, DeltaBCD ve DeltaACD'de, açı CBD = açı ACD ve açı BDC = açıADC. Yani, AA Benzerlik Kriterleri ile DeltaBCD ~ = DeltaACD. Benzer şekilde, DeltaBCD ~ = DeltaABC'yi bulabi