Bir çizgi boyunca hareket eden bir nesnenin konumu, p (t) = cos (t-pi / 2) +2 ile verilir. Nesnenin hızı t = (2pi) / 3'teki hızı nedir?
"Nesnenin hızı:" v ((2pi) / 3) = - 1/2 v (t) = d / (dt) p (t) v (t) = d / (dt) [cos (t-pi / 2)] v (t) = - günah (t-pi / 2) v ((2pi) / 3) = - günah ((2pi) / 3-pi / 2) v (2pi / 3) = - günah ( pi / 6) günah (pi / 6) = 1/2 v ((2pi) / 3) = - 1/2
Bir çizgi boyunca hareket eden bir nesnenin konumu, p (t) = cos (t-pi / 3) +1 ile verilir. Nesnenin hızı t = (2pi) / 4'teki hızı nedir?
V ((2pi) / 4) = -1/2 Konum için verilen denklem bilindiğinden, verilen denklemi farklılaştırarak nesnenin hızı için bir denklem belirleyebiliriz: v (t) = d / dt p ( t) = -sin (t - pi / 3) hızını bilmek istediğimiz noktaya takılıyor: v ((2pi) / 4) = -sin ((2pi) / 4 - pi / 3) = -sin ( pi / 6) = -1/2 Teknik olarak, nesnenin hızının aslında 1/2 olduğu söylenebilir, çünkü hız bir yönsüz büyüklüktür, ancak işaretten ayrılmayı seçtim.
2 saniyede (8, -8,2) ila (-5, -3, -7) arasında seyahat eden bir nesnenin hızı nedir?
V = 8,2925 P_1: (8, -8,2) "" P_2 başlama noktası: (- 5, -3, -7) "" Delta x = P_ (2x) -P_ (1x) = " -5-8 = -13 Delta y = P_ (2y) -P_ (1y) = - 3 + 8 = 5 Delta z = P_ (2z) -P_ (1z) = - 7-2 = -9 "iki arasındaki mesafe nokta şu şekilde verilir: "s = (Delta x_x ^ 2 + Delta _y ^ 2 + Delta_z ^ 2) ^ (1/2) s = (169 + 25 + 81) ^ (1/2) s = (275) ^ (1/2) s = 16.585 hız = ("mesafe") / ("geçen süre") v = (16,585) / 2 v = 8,2925