Cevap:
asimptotlar meydana gelir
Açıklama:
Payda ilk faktör, karelerin farkı:
bu nedenle çıkarılabilir süreksizlik, iptal edilebilecek herhangi bir faktördür, çünkü pay faktorite edilemez olduğundan, iptal eden herhangi bir terim yoktur, bu nedenle, işlevin çıkarılabilir süreksizliği yoktur.
bu yüzden paydadaki her iki faktör de asimptottur, paydayı sıfıra eşit olarak ayarlayın ve x için çözün:
Böylece asimptotlar
grafik {(x ^ 2 + 1) / (x ^ 2-1) -10, 10, -5, 5}
Varsa, f (x) = (1 - 4x ^ 2) / (1 - 2x) 'deki asimptotlar ve çıkarılabilir süreksizlik nedir?
Payda sıfır olduğunda, işlev süreksiz olacaktır; x = 1/2 olduğunda As | x | çok büyüdükçe, ifade +2x'e yönelir. Bu nedenle, ifade belirli bir değere eğilimli olmadığından hiçbir asimptottur. İfade, paylayıcının iki kare farkının bir örneği olduğunu not ederek basitleştirilebilir. Sonra f (x) = ((1-2x) (1 + 2x)) / ((1-2x)) Faktör (1-2x) iptal eder ve ifade f (x) = 2x + 1 olur; düz çizginin denklemi. Süreksizlik kaldırıldı.
Varsa, f (x) = (1-5x) / (1 + 2x) 'deki asimptotlar ve çıkarılabilir süreksizlik nedir?
"x = 1 / 2'de" dikey asimptot "" y = -5 / 2'de "yatay asimptot" f (x) in paydası, f (x) 'in tanımsız hale getireceğinden sıfır olamaz. Paydayı sıfıra eşitlemek ve çözmek, x'in olamayacağı değeri verir ve eğer bu değer için pay sıfır değilse, o zaman dikey bir asimptottur. "çözmek" 1 + 2x = 0rArrx = -1 / 2 "asimptottur" "yatay asimptotlar" lim_ (xto + -oo), f (x) toc "(bir sabit)" "şeklinde oluşur; x "f (x) = (1 / x- (5x) / x) / (1 / x + (2x) / x) = (1 / x-5) / (1 / x + 2) xto + -oo olarak, f (x) ila (0-5
Varsa, f (x) = 1 / (8x + 5) -x'deki asimptotlar ve çıkarılabilir süreksizlik nedir?
X = -5 / 8'de Asimptote Çıkarılabilir süreksizlik yok Payda, faktördeki faktörlerle hiçbir faktörü iptal edemezsiniz, böylece çıkarılabilir süreksizlik yoktur (delikler). Asimptotları çözmek için payı 0: 8x + 5 = 0 8x = -5 x = -5 / 8 grafiğine eşit olarak ayarlayın {1 / (8x + 5) -x [-10, 10, -5, 5]}