Cevap:
Açıklama:
En az miktar
Kontrol:
Meydanın tamamlanması,
Cevap:
Açıklama:
Böyle bir kuadratik grafiğin denkleminin istendiğini varsayarsak:
vertex'i minimum yapar, bu durumda
köşe sonra:
Böylece grafiğin denklemi şöyledir:
İkinci dereceden bir fonksiyonun grafiğinin (2,0) tepe noktası vardır. Grafikteki bir nokta (5,9) Diğer noktayı nasıl buluyorsunuz? Nasıl olduğunu açıkla?
Parabol üzerindeki ikinci dereceden bir fonksiyonun grafiği olan bir başka nokta (-1, 9) Bunun ikinci dereceden bir fonksiyon olduğu söylenir. Bunun en basit anlayışı şu şekilde bir denklemle tanımlanabileceğidir: y = ax ^ 2 + bx + c ve dikey eksenli bir parabol olan bir grafiğe sahiptir. Köşenin (2, 0) olduğu söylenir. Bu nedenle eksen, köşe boyunca uzanan x = 2 dikey çizgisiyle verilir. Parabol bu eksen etrafında iki taraflı simetriktir, bu nedenle noktanın (5, 9) ayna görüntüsü de parabolün üzerindedir. Bu yansıma görüntüsü aynı y koordinatı
İkinci dereceden bir fonksiyonun grafiğinde -2 ve 7/2 olan x-kesişimleri vardır, bu kökleri olan ikinci dereceden bir denklemi nasıl yazarsınız?
2 gerçek kökü bilen f (x) = ax ^ 2 + bx + c = 0: x1 = -2 ve x2 = 7/2. Bir kuadratik denklem balta ^ 2 + bx + c = 0 olan 2 gerçek kök c1 / a1 ve c2 / a2'ye bakıldığında, 3 ilişki vardır: a1a2 = a c1c2 = c a1c2 + a2c1 = -b (Çapraz toplam). Bu örnekte, 2 gerçek kök: c1 / a1 = -2/1 ve c2 / a2 = 7/2. a = 12 = 2 c = -27 = -14 -b = a1c2 + a2c1 = -22 + 17 = -4 + 7 = 3. Kuadratik denklem şöyledir: Cevap: 2x ^ 2 - 3x - 14 = 0 (1) Kontrol Et: (1) 'in 2 gerçek kökünü yeni AC Yöntemi ile bulun. Dönüştürülen denklem: x ^ 2 - 3x - 28 =
2x ^ 2-4x + 5 = 0 ikinci dereceden denkleminin kökleri alfa (a) ve beta (b) 'dir. (a) 2a ^ 3 = 3a-10 (b) 2a / b ve 2b / a kökleri ile ikinci dereceden denklemi mi buldunuz?
Aşağıya bakınız. Öncelikle köklerini bulun: 2x ^ 2-4x + 5 = 0 ikinci dereceden formülünü kullanarak: x = (- (- 4) + - sqrt ((- - 4) ^ 2-4 (2) (5))) / 4 x = (4 + -sqrt (-24)) / 4 x = (4 + -2isqrt (6)) / 4 = (2 + -isqrt (6)) / 2 alfa = (2 + isqrt (6)) / 2 beta = (2-isqrt (6)) / 2 a) 2a ^ 3 = 3a-10 2 ((2 + isqrt (6)) / 2) ^ 3 = 3 ((2 + isqrt (6)) / 2 ) -10 2 ((2 + isqrt (6)) / 2) ^ 3 = (2 (2 + isqrt (6)) (2 + isqrt (6)) (2 + isqrt (6))) / 8 = 2 * (- 28 + 6isqrt (6)) / 8 renk (mavi) (= (- 14 + 3isqrt (6)) / 2) 3 ((2 + isqrt (6)) / 2) -10 = (6 + 3isqrt (6)) / 2-10 = (6 + 3 (6) -20) / 2 renk (mavi) (= (-