İki basamaklı bir numaranın onlar basamağı, birim basamağın 1 ile iki katını aşıyor. Basamaklar ters çevrilirse, yeni numara ile orijinal numara toplamı 143'tür.Orijinal numara nedir?
Orijinal sayı 94'dür. İki basamaklı bir tamsayı on rakamında a, birim rakamında b ise sayı 10a + b'dir. X, orijinal sayının birim basamağıdır. Daha sonra, on rakamı 2x + 1'dir ve sayı 10 (2x + 1) + x = 21x + 10'dur. Rakamlar tersine çevrilmişse, onlarlık rakam x, birim rakam 2x + 1'dir. Tersine çevrilen sayı 10x + 2x + 1 = 12x + 1'dir. Bu nedenle, (21x + 10) + (12x + 1) = 143 33x + 11 = 143 33x = 132 x = 4 Orijinal sayı 21 * 4 + 10 = 94.
Gerçek sayı, tam sayı, tam sayı, rasyonel sayı ve irrasyonel sayı nedir?
Aşağıdaki Açıklama Rasyonel sayılar 3 farklı biçimdedir; tamsayılar, kesirler ve 1/3 gibi ondalık ya da sonlandırıcı sayılar. İrrasyonel sayılar oldukça 'dağınıktır'. Kesirler olarak yazılamazlar, asla bitmezler, tekrar etmeyen ondalık sayılardır. Buna bir örnek π değeridir. Tam sayıya tam sayı adı verilebilir ve pozitif veya negatif bir sayı veya sıfırdır. Buna bir örnek 0, 1 ve -365'tir.
Sqrt21 gerçek sayı, rasyonel sayı, tam sayı, Tam sayı, İrrasyonel sayı mı?
Bu irrasyonel bir sayıdır ve bu nedenle gerçektir. İlk önce sqrt (21) 'in gerçek bir sayı olduğunu ispatlayalım, aslında tüm pozitif gerçek sayıların karekökü gerçektir. Eğer x, gerçek bir sayı ise, o zaman pozitif sayılar için tanımlarız sqrt (x) = "sup" {yinRR: y ^ 2 <= x}. Bu, y = 2 <= x olacak şekilde tüm gerçek sayılara bakacağımız anlamına gelir ve supremum adı verilen tüm bu y değerlerinden daha büyük olan en küçük gerçek sayıyı alırız. Negatif sayılar için bu y'ler yoktur, çünkü