Cevap:
Açıklama:
Bir çizginin denklemi 2x + 3y - 7 = 0, bul: - (1) çizginin eğimi (2) verilen çizgiye dik ve çizginin kesişme noktasından geçen çizginin denklemi x-y + 2 = 0 ve 3x + y-10 = 0?
-3x + 2y-2 = 0 renk (beyaz) ("ddd") -> renk (beyaz) ("ddd") y = 3 / 2x + 1 İlk prensiplerin nasıl çalıştığını gösteren çok detaylı ilk bölüm. Bunlara bir kez alışıp kısayolları kullanarak çok daha az satır kullanacaksınız. color (blue) ("İlk denklemlerin kesişimini belirleyin") x-y + 2 = 0 "" ....... Denklem (1) 3x + y-10 = 0 "" .... Denklem ( 2) Eqn (1) 'in her iki tarafından -y + 2 = -x veren x'i çıkar. Her iki tarafı da (-1) + y-2 = + x "" .......... ile eşitle (1_a) ) Eqn (2) renkli (yeşil) (3 renk (kırmızı) (x) +
Bir çizginin eğimi -3'tür. Bu çizgiye dik olan bir çizginin eğimi nedir?
1/3. M_1 ve m_2 eğimli çizgiler birbirleriyle bottur iff m_1 * m_2 = -1. Dolayısıyla, reqd. eğim 1/3.
Noktadan (0, 2) geçen ve eğimi 3 olan bir çizgiye dik olan çizginin denklemi nedir?
Y = -1/3 x + 2> m_1 "ve" m_2 sonra m_1 degradelerine sahip 2 dikey çizgi için. m_2 = -1 burada 3 xx m = - 1 rArr m = -1/3 çizginin denklemi, y - b = m (x - a) gereklidir. m = -1/3 "ve (a, b) = (0, 2)" dolayısıyla y - 2 = -1/3 (x - 0) rArr y = -1/3 x + 2