Cevap:
Mükemmel bir rekabet, birçok alıcı ve satıcının olduğu ve tüm firmaların fiyat alıcı olduğu bir piyasa yapısıdır. Piyasaya kolayca girip çıkabilirsiniz.
Açıklama:
Bu pazarda pek çok şirket olduğundan, hepsinin (piyasa güçleri tarafından belirlenen) piyasa fiyatından satış yapması gerekiyor. Biri piyasa fiyatının üstünde satmaya çalışırsa, tek bir birim satmazlar ve bu fiyattan satış yapmak için bir neden yoktur. Bu, her firmanın pazar fiyatını verilen gibi alacağı anlamına gelir, yani hepsi fiyat alıcılarıdır.
Ayrıca, herhangi bir kişi özel bir maliyeti olmadan bu pazara kolayca girebilir veya gidebilir.
Örneğin, soya pazarını düşünebilirsiniz. Tamamen mükemmel değil, ancak çiftçiler finansal piyasada sabit fiyatlarla satmak zorunda ve herkes bu ürünü üretmeye başlayabilir veya durdurabilir.
İki saat yüzünün alanları 16:25. Küçük saat yüzünün yarıçapının, büyük saat yüzünün yarıçapına oranı nedir? Büyük saat yüzünün yarıçapı nedir?
5 A_1: A_2 = 16: 25 A = pir ^ 2 => pir_1 ^ 2: pir_2 ^ 2 = 16: 25 => (pir_1 ^ 2) / (pir_2 ^ 2) = 16/25 => (r_1 ^ 2) / (r_2 ^ 2) = 4 ^ 2/5 ^ 2 => r_1 / r_2 = 4/5 => r_1: r_2 = 4: 5 => R_2 = 5
Bayan Ruiz'in sınıfı bir hafta boyunca konserve ürünleri topladı. Pazartesi günü 30 konserve ürünü topladılar. Her gün, bir önceki günden 15 daha fazla konserve ürünü topladılar. Cuma günü kaç tane konserve ürünü topladılar?
Bunu çözmek için önce açık bir formül oluşturun. Açık bir formül, n'nin tüm gerçek sayıları temsil ettiği n numaralı terime göre bir dizideki herhangi bir terimi temsil eden formüldür.Bu nedenle, bu durumda, açık formül 15n + 30 olacaktır. Salı, pazartesiden sonraki ilk gün olduğu gibi, salı günündeki konserve ürünlerinin miktarını hesaplamak istiyorsanız, sadece 1 ile n'yi değiştirin. , ikame n 4 ile. 15 (4) + 30 Cevabınız 90 olmalıdır. Dolayısıyla, Cuma günü 90 konserve ürünü topladılar.
Polinomun f (x) = ax ^ 3 + 3bx ^ 2 + 3cx + d'nin tam olarak g (x) = ax ^ 2 + 2bx + c'ye bölünmesi durumunda, f (x) 'in mükemmel bir küp olduğunu, g (x) mükemmel bir kare mi?
Aşağıya bakınız. Verilen f (x) ve g (x) f (x) = ax ^ 3 + 3bx ^ 2 + 3cx + dg (x) = ax ^ 2 + 2bx + c ve g (x) f (x) 'i bölü sonra f (x) = (x + e) g (x) Şimdi grup katsayılarını {(dc e = 0), (cb e = 0), (bae = 0):} çözerek elde ederiz. {(a = d / e ^ 3), (b = d / e ^ 2), (c = d / e):} koşulu ve f (x) ve g (x) f (x) = (yerine) d (x + e) ^ 3) / e ^ 3 = (kök (3) (d) (x + e) / e) ^ 3 g (x) = (d (x + e) ^ 2) / e ^ 3 = (sqrt (d / e) (x + e) / e) ^ 2