Cevap:
Açıklama:
Merkezli bir daire için genel form
Merkezi ile
ve merkez olduğundan
Genel formülü uygulayarak elde ederiz:
Büyük dairenin yarıçapı, küçük dairenin yarıçapının iki katı uzunluğundadır. Çörek alanı 75 pi'dir. Küçük (iç) dairenin yarıçapını bulun.
Küçük yarıçapı 5'tir. R = iç dairenin yarıçapı. Daha sonra büyük çemberin yarıçapı 2r'dir Referanstan, bir halka alanı için denklemi elde ettik: A = pi (R ^ 2-r ^ 2) R için 2r ikame maddesi: A = pi ((2r) ^ 2- r ^ 2) Basitleştirin: A = pi ((4r ^ 2- r ^ 2) A = 3pir ^ 2 Verilen alandaki alternatifler: 75pi = 3pir ^ 2 Her iki tarafı da 3pi ile bölün: 25 = r ^ 2 r = 5
Orjinalinde merkez olan ve 9'luk yarıçaplı bir dairenin denkleminin genel şekli nedir?
X ^ 2 + y ^ 2 = 81 Bir noktada (x_0, y_0) ortalanmış bir yarıçap dairesi r eşitliğine sahiptir (x-x_0) ^ 2 + (y-y_0) ^ 2 = r ^ 2 Yerine getirme r = 9 ve (x_0, y_0) için orijin (0,0), bize x ^ 2 + y ^ 2 = 81 verir
Noktalar (–9, 2) ve (–5, 6), bir dairenin çapının bitiş noktalarıdır. Çapın uzunluğu nedir? Dairenin merkez noktası C nedir? (B) bölümünde bulduğun C noktası göz önüne alındığında, X ekseni etrafında C'ye simetrik olan noktayı belirt
D = sqrt (32) = 4sqrt (2) ~~ 5.66 merkez, C = (-7, 4) x ekseni etrafında simetrik nokta: (-7, -4) Verilen: bir dairenin çapının bitiş noktaları: (- 9, 2), (-5, 6) Çapın uzunluğunu bulmak için mesafe formülünü kullanın: d = sqrt ((y_2 - y_1) ^ 2 + (x_2 - x_1) ^ 2) d = sqrt ((- - 9 - -5) ^ 2 + (2 - 6) ^ 2) = sqrt (16 + 16) = sqrt (32) = sqrt (16) sqrt (2) = 4 sqrt (2) ~~ 5.66 Orta nokta formülünü kullan: merkezini bulun: ((x_1 + x_2) / 2, (y_1 + y_1) / 2): C = ((-9 + -5) / 2, (2 + 6) / 2) = (-14/2, 8/2) = (-7, 4) X ekseni (x, y) -> (x, -y) hakkındaki yansıma için koordinat