Cevap:
Açıklama:
Varsayalım ki ortak oran (cr) arasında Söz konusu GP olduğu
terim o son dönem.
Verilen, ilk dönem arasında GP olduğu
göz önüne alındığında,
Biz de biliyoruz ki son dönem olduğu
Şimdi,
Geometrik bir dizinin birinci ve ikinci terimleri, sırasıyla bir doğrusal dizinin birinci ve üçüncü terimleridir. Lineer dizinin dördüncü terimi 10'dur ve ilk beş teriminin toplamı 60'tır.
{16, 14, 12, 10, 8} Tipik bir geometrik dizi c_0a, c_0a ^ 2, cdots, c_0a ^ k ve c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + olarak tipik bir aritmetik dizi olarak gösterilebilir. kDelta {'c_0 a ^ 2 = c_0a + 2Delta -> "GS'nin ilk ve ikincisi bir LS'nin birinci ve üçüncüsüdür), (c_0a + 3Delta = 10- > "Doğrusal dizinin dördüncü terimi 10"), (5c_0a + 10Delta = 60 -> "İlk beş teriminin toplamı 60" dır))}} c_0, a, Delta çözme c_0 = 64/3 , a = 3/4, Delta = -2 ve aritmetik sekans için ilk beş element {16, 14, 12, 10,
Bir AP'nin dördüncü terimi, yedinci terimi üçüncü terimin 1 ile iki katını geçtiği üç katına eşittir. İlk terimi ve ortak farkı buluyor musunuz?
A = 2/13 d = -15/13 T_4 = 3 T_7 ......... (1) T_4 - 2T_3 = 1 ........ (2) T_n = a + (n- 1) d T_4 = a + 3d T_7 = a + 6d T_3 = a + 2d (1) denklemindeki değiştirme değerleri, a + 3d = 3a + 18d = 2a + 15d = 0 .......... .... (3) (2) denklemindeki değerleri değiştirme, a + 3d - (2a + 4d) = 1 = a + 3d - 2a - 4d = 1 -a -d = 1 a + d = -1. ........... (4) (3) ve (4) denklemlerini aynı anda çözdüğümüzde, d = 2/13 a = -15/13
Bir geometrik dizinin ardışık dört teriminin toplamı 30'dur. Birinci ve son terimin AM değeri 9 ise, ortak oranı bulun.
Birinci dönem ve genel GP oranının sırasıyla a ve r olmasını sağlayın. Birinci koşula göre a + ar + ar ^ 2 + ar ^ 3 = 30 ... (1) İkinci koşula göre a + ar ^ 3 = 2 * 9 .... (2) (1) ar'dan (2) çıkarma + ar ^ 2 = 12 .... (3) (2) 'e (3) göre bölme (1 + r ^ 3) / (r + r ^ 2) = 18/12 = 3/2 => ((1+ r) (1-r + r ^ 2)) / (r (1 + r)) = 3/2 => 2-2r + 2r ^ 2 = 3r => 2r ^ 2-5r + 2 = 0 => 2r ^ 2-4r-r + 2 = 0 => 2r (r-2) -1 (r-2) = 0 => (r2) (2r-1) = 0 Yani r = 2or1 / 2