Cevap:
Açıklama:
Bir nokta olsunlar
ve directrix'e olan uzaklığı
Dolayısıyla denklem olurdu
grafik {y ^ 2 + 184x-82y-10095 = 0 -746.7, 533.3, -273.7, 366.3}
Parabolün denkleminin x = 5'te bir directrix ve (11, -7) 'deki bir fokus ile standart formu nedir?
(y + 7) ^ 2 = 12 * (x-8) Denkleminiz şu şekildedir (yk) ^ 2 = 4 * p * (xh) Odak: (h + p, k) Directrix (hp) Odak noktası (11, -7) -> h + p = 11 "ve" k = -7 "dir. X = 5 -> hp = 5 h + p = 11" "(eq. 1)" hp = 5 "" (eşd. 2) ul ("kullanın (eşd. 2) ve h" için çözün) "" h = 5 + p "(eşd. 3)" ul ("Kullanım (eşd. 1) + (eşd. 3) ) "p) (5 + p) + p = 11 değerini bulmak için 5 + 2p = 11 2p = 6 p = 3 ul (" "h) h = 5 + değerini bulmak için (eq.3) kullanın. ph = 5 + 3 h = 8 "" h, p "ve" k "değe
Parabolün denkleminin x = -5'te bir directrix ve (-7, -5) 'deki bir fokus ile standart formu nedir?
Parabolün denklemi (y + 5) ^ 2 = -4x-24 = -4 (x + 6) Parabolün üzerindeki herhangi bir nokta (x, y), direktris ve odaktan eşit. Bu nedenle, x - (- 5) = sqrt ((x - (- 7)) ^ 2+ (y - (- 5)) ^ 2) x + 5 = sqrt ((x + 7) ^ 2 + (y + 5) ^ 2) (x + 7) ^ 2 terimi ve LHS'yi (x + 5) ^ 2 = (x + 7) ^ 2 + (y + 5) ^ 2 x ^ 2 + 10x + 25 = x ^ 2 + 14x + 49 + (y + 5) ^ 2 (y + 5) ^ 2 = -4x-24 = -4 (x + 6) Parabolün denklemi (y + 5) ^ 2 = -4x-24 = -4 (x + 6) grafik {((y + 5) ^ 2 + 4x + 24) ((x + 7) ^ 2 + (y + 5) ^ 2-0.03) (y-100 (x + 5)) = 0 [-17.68, 4.83, -9.325, 1.925]}
Parabolün denkleminin x = -9'da bir directrix ve (-6,7) 'deki bir fokus ile standart formu nedir?
Denklem (y-7) ^ 2 = 6 (x + 15/2) Herhangi bir nokta (x, y) directrix ve fokus ile aynıdır. (x + 9) = sqrt ((x + 6) ^ 2 + (y-7) ^ 2) (x + 9) ^ 2 = (x + 6) ^ 2 + (y-7) ^ 2 x ^ 2 + 18x + 81 = x ^ 2 + 12x + 36 + (y-7) ^ 2 6x + 45 = (y-7) ^ 2 Standart biçim: (y-7) ^ 2 = 6 (x + 15/2 ) grafik {((y-7) ^ 2-6 (x + (15/2))) = 0 [-18.85, 13.18, -3.98, 12.04]}