Cevap:
Açıklama:
Eqn'yi çözmek için dönüştürmemiz gerekir.
Cevap:
Açıklama:
derece cinsinden radyan: -
Cevap:
Açıklama:
İki saat yüzünün alanları 16:25. Küçük saat yüzünün yarıçapının, büyük saat yüzünün yarıçapına oranı nedir? Büyük saat yüzünün yarıçapı nedir?
5 A_1: A_2 = 16: 25 A = pir ^ 2 => pir_1 ^ 2: pir_2 ^ 2 = 16: 25 => (pir_1 ^ 2) / (pir_2 ^ 2) = 16/25 => (r_1 ^ 2) / (r_2 ^ 2) = 4 ^ 2/5 ^ 2 => r_1 / r_2 = 4/5 => r_1: r_2 = 4: 5 => R_2 = 5
İspat: - günah (7 teta) + günah (5 teta) / günah (7 teta) -sin (5 teta) =?
(sin7x + sin5x) / (sin7x-sin5x) = tan6x * cotx rarr (sin7x + sin5x) / (sin7x-sin5x) = (2sin ((7x + 5x) / 2) * cos ((7x5x) / 2) ) / (2sin ((7x-5x) / 2) * cos ((7x + 5x) / 2) = (sin6x * cosx) / (sinx * cos6x) = (tan6x) / tanx = tan6x * cottx
Günah ((5pi) / 9) cos ((7pi) / 18) -cos ((5pi) / 9) günah ((7pi) / 18) nasıl değerlendirirsiniz?
1/2 Bu denklem, bazı trigonometrik kimlikleri hakkında biraz bilgi kullanarak çözülebilir.Bu durumda, günahın (A-B) genişlemesi bilinmelidir: sin (A-B) = sinAcosB-cosAsinB Bunun, sorudaki denklemle oldukça benzer göründüğünü fark edeceksiniz. Bilgiyi kullanarak bunu çözebiliriz: günah ((5pi) / 9) cos ((7pi) / 18) -cos ((5pi) / 9) günah ((7pi) / 18) = günah ((5pi) / 9) - (7pi) / 18) = günah ((10pi) / 18- (7pi) / 18) = günah ((3pi) / 18) = günah ((pi) / 6)