Cevap:
Açıklama:
İşlevi olduğu gibi alacak olsaydın, o zaman
Bununla birlikte, işlevi basitleştirebiliriz:
İki saat yüzünün alanları 16:25. Küçük saat yüzünün yarıçapının, büyük saat yüzünün yarıçapına oranı nedir? Büyük saat yüzünün yarıçapı nedir?
5 A_1: A_2 = 16: 25 A = pir ^ 2 => pir_1 ^ 2: pir_2 ^ 2 = 16: 25 => (pir_1 ^ 2) / (pir_2 ^ 2) = 16/25 => (r_1 ^ 2) / (r_2 ^ 2) = 4 ^ 2/5 ^ 2 => r_1 / r_2 = 4/5 => r_1: r_2 = 4: 5 => R_2 = 5
Doğrusal bir denklemin m eğimi, m = (y_2 - y_1) / (x_2-x_1) formülünü kullanarak bulunabilir, burada x değerleri ve y değerleri iki sıralı çiftten (x_1, y_1) ve (x_2) gelir , y_2), y_2 için çözülmüş eşdeğer bir denklem nedir?
İstediğiniz şeyin ne olduğundan emin değilim ama ... = işareti üzerindeki birkaç "Algaebric Movement" kullanarak y_2'yi izole etmek için ifadenizi yeniden düzenleyebilirsiniz: Başlangıç: m = (y_2-y_1) / (x_2-x_1) Alın ( x_2-x_1) başlangıçta bölüştüyse, eşittir işaretini geçtikten sonra çarpacağını hatırlatan = işareti boyunca sola: (x_2-x_1) m = y_2-y_1 Sonra işlemi değiştirmeyi hatırlatarak sola y_1 alacağız tekrar: çıkarma işleminden toplama: (x_2-x_1) m + y_1 = y_2 Artık yeniden düzenlenmiş ekspononu y_2 cinsinden "okuyabiliriz": y_
Üst üste üç garip tamsayının en büyüğünün iki katı, en büyüğünden 7 kat daha büyük, tam sayıları nasıl buluyorsunuz?
Soruyu yorumlayın ve bulmak için çözümü yapın: 11, 13, 15 Üç tamsayının en küçüğü n ise, diğerleri n + 2 ve n + 4'tür ve bulursak: 2n = (n + 4) +7 = n + 11 Her iki uçtan n'i çıkarın: n = 11 Böylece üç tam sayı: 11, 13 ve 15.