Cevap:
Üç.
Açıklama:
Sadece üç katları
Bunu belirlemek için, katlarının listesini oluşturabiliriz.
Bu listedeki tüm numaralara bölünebilir.
Dört ardışık tamsayının ürünü 13 ve 31 ile bölünebilir mi? Ürün mümkün olduğu kadar küçükse, arka arkaya dört tam sayı nedir?
Dört ardışık tam sayıya ihtiyacımız olduğundan, LCM'nin bunlardan biri olması gerekir. LCM = 13 * 31 = 403 Ürünün mümkün olduğunca küçük olmasını istiyorsak, diğer üç tamsayının 400, 401, 402 olmasını isteriz. Dolayısıyla, dört ardışık tam sayı 400, 401, 402, 403'tür. Umarım bu yardım eder!
Bir sayı dört kat başka bir sayıdır. Daha küçük sayı daha büyük sayıdan çıkarılırsa, sonuç daha küçük sayı 30'luk artıyormuş gibi olur. İki sayı nedir?
A = 60 b = 15 Büyük sayı = a Daha küçük sayı = ba = 4b ab = b + 30 abb = 30 a-2b = 30 4b-2b = 30 2b = 30 b = 30/2 b = 15 a = 4xx15 a = 60
Bir polinom bölündüğünde (x + 2), kalan -19'dır. Aynı polinom (x-1) ile bölündüğünde, kalan 2, polinomun (x + 2) (x-1) ile bölünmesi durumunda kalanı nasıl belirlersiniz?
Kalan Teoremden f (1) = 2 ve f (-2) = - 19 olduğunu biliyoruz. Şimdi (x-1) (x + 2) 'e bölündüğünde kalan f (x) polinomunun kalanını bulur. Ax + B, çünkü ikinci dereceden bölündükten sonra kalan kısımdır. Şimdi bölen çarpı çarpım çarpımını çarpıştırabiliriz. Q ... f (x) = Q (x-1) (x + 2) + Ax + B Sonra, x ... f (1) = için 1 ve -2 ekleyin Q (1-1) (1 + 2) + A (1) + B = A + B = 2 f (-2) = Q (-2-1) (- 2 + 2) + A (-2) + B = -2A + B = -19 Bu iki denklemi çözerek A = 7 ve B = -5 elde ediyoruz = Kalan = Ax + B = 7x-5