Bar (AB) C ve D'de eşit ve eşit olmayan bölümlere ayrılsın. Bar (AD) xxDB'nin içerdiği dikdörtgenin, CD'deki kare ile birlikte, CB üzerindeki kareye eşit olduğunu gösterin.
Şekil C'de AB'nin orta noktasıdır. Öyleyse AC = BC Şimdi çubuk (AD) ve bar (DB) ile birlikte kare onbar (CD) = bar (AD) xxbar (DB) + bar (CD) ^ 2 = (bar (AC) + bar () CD)) xx (bar (BC) -bar (CD)) + bar (CD) ^ 2 = (bar (BC) + bar (CD)) xx (bar (BC) -bar (CD)) + bar (CD) ) ^ 2 = bar (BC) ^ 2-iptal (bar (CD) ^ 2) + iptal (bar (CD) ^ 2) = bar (BC) ^ 2 -> "CB üzerinde kare" Kanıtlandı
En iyi uyum çizgisi, x'in 35'e eşit olduğunda y'nin 34.785'e eşit olacağını, ancak y'nin gerçekten 37'ye eşit olduğunu tahmin eder. Bu durumda kalan nedir?
2.215 Artık, e = y - hat y = 37 - 34.785 = 2.215 olarak tanımlanır.
Maya'nın bir kurdele parçası var. Şeridi 4 eşit parçaya böler. Her parça daha sonra 3 daha küçük eşit parçaya bölünür. Her küçük parçanın uzunluğu 35 cm ise, şerit parçası ne kadardır?
Her küçük parça 35 cm ise 420 cm ve bunlardan üçü varsa çarpın (35) (3) VEYA 35 + 35 + 35 ekleyin, şimdi 105 ile çarpın (105) (4) VEYA 105 + 105 + 105 ekleyin +105) çünkü bu parça 420 cm'ye sahip 4 parçadan biriydi (üniteyi eklemeyi unutma!) KONTROL EDİN, 420'yi 4 parçaya bölün (420/4) bölü 105 3 küçük parçaya bölün, böylece 105'e 3 (105/3) bölün