Cevap:
Açıklama:
(-2x ^ 2y) ^ 3 (5xy ^ 3) ^ 2 ifadesini basitleştirmek için üslerin yasalarını nasıl kullanıyorsunuz?
-200x ^ 8y ^ 9 (a ^ b) ^ c = a ^ (bc) (a ^ b) (a ^ c) = a ^ (b + c) (abc) ^ d = a ^ db ^ dc ^ d Yani, biz var: (-2) ^ 3 (x ^ 2) ^ 3y ^ 3 (5) ^ 2x ^ 2 (y ^ 3) ^ 2 (-1) ^ 3 (2) ^ 3 (x ^ 2) ^ 3y ^ 3 (5) ^ 2x ^ 2 (y ^ 3) ^ 2 (-1) ^ 3 (2) ^ 3x ^ 6y ^ 3 (5) ^ 2x ^ 2y ^ 6 (-1) ^ 3 (2 ) ^ 3x ^ 8y ^ 9 (5) ^ 2 -1 (8) (25) x ^ 8y ^ 9-200x ^ 8y ^ 9
Binom Teoremini (x-5) ^ 5 genişletmek için nasıl kullanıyorsunuz?
(-5 + x) ^ 5 = -3125 + 3125x -1250x ^ 2 + 250x ^ 3-25x ^ 4 + x ^ 5 (a + bx) ^ n = toplam_ (r = 0) ^ n ((n), (r)) a ^ (nr) (bx) ^ r = sum_ (r = 0) ^ n (n!) / (r! (nr)!) a ^ (nr) (bx) ^ r (-5+ x) ^ 5 = toplam_ (r = 0) ^ 5 (5!) / (r! (5-r)!) (- 5) ^ (5-r) x ^ r (-5 + x) ^ 5 = (5!) / (0 (5-0)!) (- 5) ^ (5-0) x ^ 0 + (5!) / (1 (5-1)!) (- 5) ^ ( 5-1) x ^ 1 + (5) / (2 (5-2!))! (! -! 5) ^ (5-2) x ^ 2 + (5) / (3 (5-3) !) (- 5) ^ (5-3) x ^ 3 + (5) / (4 (5-4!)) (-! 5) ^ (5-4) x ^ 4 + (5) / (5! (5-5)!) (- 5) ^ (5-5) x ^ 5 (-5 + x) ^ 5 = (5!) / (0! 5!) (- 5) ^ 5 + (5!) / (1 4!!) (- 5) ^ 4x + (5!) / (2 3!!) (- 5) ^ 3x ^ 2 + (5!) / ((3 2
DeMoivre teoremini basitleştirmek için (5 (cos (pi / 9) + isin (pi / 9))) ^ 3'ü nasıl kullanıyorsunuz?
= 125 (1/2 + (sqrt (3)) / 2i) İsterseniz Euler formülü kullanarak 125e ^ ((ipi) / 3) olarak da yazabilir. De Moivre teoremi z = r (costheta + isintheta) z ^ n = r ^ n (cosntheta + isinntheta) için burada z = 5 (cos (pi / 9) + isin (pi / 9)) z ^ 3 = 5 ^ 3 (cos (pi / 3) + isin (pi / 3)) = 125 (1/2) (sqrt (3)) / 2i)