"Lena, ardışık 2 tam sayı içeriyor.Toplamlarının kareler arasındaki farka eşit olduğunu fark eder. Lena ardışık 2 tam sayı daha seçer ve aynı şeyi fark eder. Cebirsel olarak bunun ardışık 2 tam sayı için geçerli olduğunu kanıtlayın.
Lütfen Açıklamaya bakınız. Ardışık tam sayıların 1 ile farklılık gösterdiğini hatırlayın. Dolayısıyla, eğer m bir tam sayıysa, sonraki tam sayı n + 1 olmalıdır. Bu iki tamsayının toplamı n + (n + 1) = 2n + 1'dir. Kareleri arasındaki fark, (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1'dir! Matematik Sevincini Hissedin!
Bir sayı dört kat başka bir sayıdır. Daha küçük sayı daha büyük sayıdan çıkarılırsa, sonuç daha küçük sayı 30'luk artıyormuş gibi olur. İki sayı nedir?
A = 60 b = 15 Büyük sayı = a Daha küçük sayı = ba = 4b ab = b + 30 abb = 30 a-2b = 30 4b-2b = 30 2b = 30 b = 30/2 b = 15 a = 4xx15 a = 60
Bir sayı 2 kez bir sayı 7 kez çıkarıldığında sonuç 5 olur. Sayı nedir?
Sayı 1'dir. Sayıyı x olarak kabul edin. Dolayısıyla, soruna göre 2 kez bir sayı 7'den çıkarılır ve sonuç 5 olur.Denklem şu şekilde olacaktır: 7 - 2x = 5 Şimdi x için çözmek zorundayız: => 7 - 2x = 5 => 2x = 7 - 5 => 2x = 2 => x = 1