X = 3'teki f (x) = sqrt (x ^ 2e ^ x) teğet çizgisinin denklemi nedir?

X = 3'teki f (x) = sqrt (x ^ 2e ^ x) teğet çizgisinin denklemi nedir?
Anonim

Cevap:

• y = 11.2x-20.2 #

Veya

• y = (5e ^ (3/2)) / 2 x-2e ^ (3/2) #

• y = e ^ (3/2) ((5x) / 2-2) #

Açıklama:

Sahibiz:

#f (x) = (x ^ 2e ^ x) ^ (1/2) #

#f '(x) = (x ^ 2e ^ x) ^ (- 1/2) / 2 x d / dx x ^ 2e ^ x #

#f '(x) = (x ^ 2e ^ x) ^ (- 1/2) / 2 * (2XE ^ x + x ^ 2e ^ x) #

#f '(x) = ((2XE ^ x + x ^ 2e ^ x) (x ^ 2e ^ x) ^ (- 1/2)) / 2 #

#f '(x) = (2XE ^ x + x ^ 2e ^ x) / (2 (x ^ 2e ^ x) ^ (1/2)) = (2XE ^ x + x ^ 2e ^ x) / (2sqrt (x ^ 2e ^ x)) #

#f '(3) = (2 (3) E ^ 3 + 3 ^ 2e ^ 3) / (2sqrt (3 ^ 2e ^ 3)) = (5e ^ (3/2)) / 2 ~~ 11.2 #

• y = mx + c #

#f (3) sqrt = (9e ^ 3) = 3e ^ (3/2) ~~ 13.4 #

# 13.4 = 11.2 (3) + c #

# C = (3) 13.4-11.2 = - 20.2 #

• y = 11.2x-20.2 #

Veya

• y = (5e ^ (3/2)) / 2 x-2e ^ (3/2) #

• y = e ^ (3/2) ((5x) / 2-2) #