Cevap:
Açıklamaya bakınız …
Açıklama:
Polinom ayırıcı
Verilen:
#f (x) = a_nx ^ n + a_ (n-1) x ^ (n-1) + … + a_1x + a_0 #
Sahibiz:
#f '(x) = na_ (n-1) x ^ (n-1) + (n-1) a_ (n-1) x ^ (n-2) + … + a_1 #
Sylvester matrisi
# ((a_4, a_3, a_2, a_1, a_0, 0, 0), (0, a_4, a_3, a_2, a_1, a_0, 0), (0, 0, a_4, a_3, a_2, a_1, a_0), (4a_4, 3a_3, 2a_2, a_1, 0, 0, 0), (0,4a_4,3a_3,2a_2, a_1,0,0), (0, 0, 4a_4, 3a_3, 2a_2, a_1, 0), (0), 0, 0, 4a_4,3a_3,2a_2, a_1)) #
Sonra ayrımcı
#Delta = (-1) ^ (1 / 2n (n-1)) / a_nabs (S_n) #
İçin
#Delta = (-1) / a_2abs ((a_2, a_1, a_0), (2a_2, a_1,0), (0,2a_2, a_1)) = a_1 ^ 2-4a_2a_0 #
(formda daha çok tanınan bulabilirsiniz
İçin
#Delta = (-1) / a_3abs ((a_3, a_2, a_1, a_0, 0), (0, a_3, a_2, a_1, a_0), (3a_3, 2a_2, a_1, 0, 0), (3, 3a_3), 2a_2, a_1, 0), (0, 0, 3a_3, 2a_2, a_1)) #
#color (beyaz) (Delta) = a_2 ^ 2a_1 ^ 2-4a_3a_1 ^ 3-4a_2 ^ 3a_0-27a_3 ^ 2a_0 ^ 2 + 18a_3a_2a_1a_0 #
Kuadratik için ayrımcılık yapanlar (
Yüksek dereceli polinomlar için diskriminantın yorumlanması daha sınırlıdır, ancak polinomun her zaman sıfırcı olması durumunda ve sadece diskriminant sıfır olduğunda özelliğe sahiptir.
daha fazla okuma
Http://www2.math.uu.se/~svante/papers/sjN5.pdf adresini ziyaret edin.
İkinci dereceden bir denklemin ayırt edici özelliği -5'tir. Hangi cevap denklemin çözüm sayısını ve türünü tanımlar: 1 karmaşık çözüm 2 gerçek çözümler 2 karmaşık çözümler 1 gerçek çözüm?
Kuadratik denkleminizin 2 karmaşık çözümü var. İkinci dereceden bir denklemin ayırımcıları bize yalnızca şu formun bir denklemi hakkında bilgi verebilir: y = ax ^ 2 + bx + c veya bir parabol. Bu polinomun en yüksek derecesi 2 olduğundan, 2'den fazla çözümü olmamalıdır. Ayırt edici, basitçe karekök simgesinin (+ -sqrt ("")) altındaki öğelerdir, karekök simgesinin kendisi değildir. + -sqrt (b ^ 2-4ac) Eğer ayrımcı, b ^ 2-4ac, sıfırdan düşükse (yani, herhangi bir negatif sayı), o zaman bir kare kök sembolünün altında negati
İki açı doğrusal bir çift oluşturur. Küçük açının ölçüsü, daha büyük açının ölçüsünün yarısıdır. Daha büyük açının derece ölçüsü nedir?
120 ^ @ Doğrusal bir çiftteki açılar toplam 180 derece ölçüsüne sahip düz bir çizgi oluşturur. Çiftteki daha küçük açı daha büyük açının ölçüsünün yarısıysa, onları şu şekilde ilişkilendirebiliriz: Daha küçük açı = x ^ @ Büyük açı = 2x ^ @ Açıların toplamı 180 ^ @ olduğundan, şunu söyleyebiliriz: bu x + 2x = 180'dir. Bu 3x = 180 olmasını basitleştirir, yani x = 60 olur. Böylece, daha büyük açı (2xx60) ^ @ veya 120 ^ @ 'dir.
Bir üçgen hem ikizkenar hem de akuttur. Üçgenin bir açısı 36 dereceyi ölçüyorsa, üçgenin en büyük açısının ölçüsü nedir? Üçgenin en küçük açısının ölçüsü nedir?
Bu sorunun cevabı kolaydır ancak bazı matematiksel genel bilgiler ve sağduyu gerektirir. İkizkenar üçgen: - Sadece iki tarafı eşit olan bir üçgene ikizkenar üçgen denir. Bir ikizkenar üçgen aynı zamanda iki eşit meleğe sahiptir. Akut Üçgen: - Tüm melekleri 0 ^ @ 'den büyük ve 90 ^ @' dan küçük olan bir üçgene, yani tüm meleklere akut olan bir akut üçgen denir. Verilen üçgen 36 ^ @ açısına sahiptir ve hem ikizken hem de akuttur. bu üçgenin iki eşit meleğe sahip olduğunu ima eder. Şimdi me