Cevap:
Açıklama:
Basitleştirmemiz isteniyor
Bu cevap asıl sorudan daha mı basit? Pek sayılmaz.
Bununla birlikte, bir fraksiyonun paydasında radikaller göründüğünde, "paydayı rasyonelleştirmek" standart bir uygulamadır.
Yani, ifadeyi payda sadece rasyonel sayılar içerecek şekilde değiştirmek.
[5 (5'in karekökü) + 3 (7'nin karekökü)] / [4 (7'nin karekökü) - 3 (5'in karekökü)] nedir?
(159 + 29sqrt (35)) / 47 renk (beyaz) ("XXXXXXXX") herhangi bir aritmetik hata yapmadığımı varsayarak (5 (sqrt (5)) + 3 (sqrt (7))) / (4 (sqrt) (7)) - 3 (sqrt (5)) Eşleniği çarparak paydayı rasyonelleştirin: = (5 (sqrt (5)) + 3 (sqrt (7))) / (4 (sqrt (7)) - 3 (sqrt (5))) xx (4 (sqrt (7)) + 3 (sqrt (5))) / (4 (sqrt (7)) + 3 (sqrt (5))) = (20sqrt (35) + 15 ((sqrt (5)) ^ 2) + 12 ((sqrt (7)) ^ 2) + 9sqrt (35)) / (16 ((sqrt (7)) ^ 2) -9 ((sqrt (5) ) ^ 2)) = (29sqrt (35) +15 (5) +12 (7)) / (16 (7) -9 (5)) = (29sqrt (35) + 75 + 84) / (112-45 ) = (159 + 29srt (35)) / 47
7 ^ 7 + karekökü 7 ^ 2 + karekökü 7 ^ 3 + karekökü 7 ^ 4 + karekökü 7 ^ 5 nedir?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) Yapabileceğimiz ilk şey, güçleri olanların köklerini iptal etmektir. O zamandan beri: herhangi bir sayı için sqrt (x ^ 2) = x ve sqrt (x ^ 4) = x ^ 2, sadece sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt diyebiliriz. (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Şimdi, 7 ^ 3, 7 ^ 2 * 7 olarak yeniden yazılabilir, ve bu 7 ^ 2 kökünden kurtulabilir! Aynısı 7 ^ 5 için de geçerlidir ancak 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt olarak yeniden yazıl
8'in karekökü 2'nin 5 eksi karekökünün karekökü ile bölünmesi nedir?
(2sqrt10 + 4) / 3 sqrt8 / (sqrt 5-sqrt 2):. (Sqrt 5 + sqrt 2) / (sqrt 5 + sqrt 2) = 1:. = Sqrt8 / (sqrt 5-sqrt 2) xx (sqrt 5 + sqrt 2) / (sqrt 5 + sqrt 2) (sqrt8 (sqrt5 + sqrt2))) / ((sqrt5-sqrt2) (sqrt5 + sqrt2)):. = (Sqrt 8 (sqrt 5 + sqrt 2)) / 3 :. = (sqrt 8 sqrt 5 + sqrt 8 sqrt 2) / 3:. = (sqrt (8 * 5) + sqrt (8 * 2)) / 3:. = (sqrt 40 + sqrt 16) / 3:. = (sqrt (2 * 2 * 2 * 5) + sqrt 16) / 3:. = sqrt2 * sqrt2 = 2:. = (sqrt (2 * 2 * 2 * 5) +4) / 3:. = (2 m2 (2 * 5) +4) / 3:. = (2 m2 + 4) / 3