Yapabileceğimiz ilk şey, güçleri olanların köklerini iptal etmektir. Dan beri:
Şimdi,
Şimdi kökü delil olarak gösterdik.
Ve toplanacak sayıları toplayın
Bu toplamlar için genel formülü geometrik ilerlemeler kullanarak bulmanın bir yolu var, ancak buraya koyamayacağım, çünkü buna sahip olup olmadığınızdan ve bunu çok fazla yapamayacağınızdan emin değilim.
[5 (5'in karekökü) + 3 (7'nin karekökü)] / [4 (7'nin karekökü) - 3 (5'in karekökü)] nedir?
(159 + 29sqrt (35)) / 47 renk (beyaz) ("XXXXXXXX") herhangi bir aritmetik hata yapmadığımı varsayarak (5 (sqrt (5)) + 3 (sqrt (7))) / (4 (sqrt) (7)) - 3 (sqrt (5)) Eşleniği çarparak paydayı rasyonelleştirin: = (5 (sqrt (5)) + 3 (sqrt (7))) / (4 (sqrt (7)) - 3 (sqrt (5))) xx (4 (sqrt (7)) + 3 (sqrt (5))) / (4 (sqrt (7)) + 3 (sqrt (5))) = (20sqrt (35) + 15 ((sqrt (5)) ^ 2) + 12 ((sqrt (7)) ^ 2) + 9sqrt (35)) / (16 ((sqrt (7)) ^ 2) -9 ((sqrt (5) ) ^ 2)) = (29sqrt (35) +15 (5) +12 (7)) / (16 (7) -9 (5)) = (29sqrt (35) + 75 + 84) / (112-45 ) = (159 + 29srt (35)) / 47
([6] 'nın karekökü + 2 karenin 2 kökü) ([6]' nın 4s karekökü - 2 'nin 3 karekökü) nedir?
12 + 5sqrt12 Çarpma ile çarpıyoruz, yani (sqrt6 + 2sqrt2) (4sqrt6 - 3sqrt2), sqrt6 * 4sqrt6 + 2sqrt2 * 4sqrt6 -sqrt6 * 3sqrt2 + 2sqrt2 * 3sqrt2 eşittir. öyleyse 4 * 6 + 8sqrt2sqrt6 - 3sqrt6sqrt2 - 6 * 2 sqrt2sqrt6 ifadesine kanıt koyduk: 24 + (8-3) sqrt6sqrt2 - 12 Bu iki kökü bir sqlxsqrty = sqrt (xy) 'den sonra birleştirebiliriz. İkisi de negatif değil. Böylece, 24 + 5sqrt12 - 12 alırız Sonunda, iki sabitin farkını alıp günde 12 + 5sqrt12 olarak adlandırırız.
8'in karekökü 2'nin 5 eksi karekökünün karekökü ile bölünmesi nedir?
(2sqrt10 + 4) / 3 sqrt8 / (sqrt 5-sqrt 2):. (Sqrt 5 + sqrt 2) / (sqrt 5 + sqrt 2) = 1:. = Sqrt8 / (sqrt 5-sqrt 2) xx (sqrt 5 + sqrt 2) / (sqrt 5 + sqrt 2) (sqrt8 (sqrt5 + sqrt2))) / ((sqrt5-sqrt2) (sqrt5 + sqrt2)):. = (Sqrt 8 (sqrt 5 + sqrt 2)) / 3 :. = (sqrt 8 sqrt 5 + sqrt 8 sqrt 2) / 3:. = (sqrt (8 * 5) + sqrt (8 * 2)) / 3:. = (sqrt 40 + sqrt 16) / 3:. = (sqrt (2 * 2 * 2 * 5) + sqrt 16) / 3:. = sqrt2 * sqrt2 = 2:. = (sqrt (2 * 2 * 2 * 5) +4) / 3:. = (2 m2 (2 * 5) +4) / 3:. = (2 m2 + 4) / 3