
Cevap:
Açıklama:
# "quadratic denkleminin" color (blue) "vertex formundaki" # olduğunu.
#color (kırmızı) # (çubuk (ul (|)) | renk (beyaz) (2/2) renk (siyah) (y (x h) ^ 2 + k) Renk (beyaz) (2/2) =) (h, k) tepe noktasının koordinatlarıdır ve a sabittir.
# "burada" (h, k) = (2,3) #
# RArry = a (x-2) ^ 2 + 3 #
# "bulmak için," (1,1) "yerine" denklemi "#
# 1 = a + 3rArra = -2 #
# rArry = -2 (x-2) ^ 2 + 3larrcolor (kırmızı) "tepe biçiminde" # grafik {-2 (x-2) ^ 2 + 3 -10, 10, -5, 5}
İkinci dereceden bir fonksiyonun grafiğinde -2 ve 7/2 olan x-kesişimleri vardır, bu kökleri olan ikinci dereceden bir denklemi nasıl yazarsınız?

2 gerçek kökü bilen f (x) = ax ^ 2 + bx + c = 0: x1 = -2 ve x2 = 7/2. Bir kuadratik denklem balta ^ 2 + bx + c = 0 olan 2 gerçek kök c1 / a1 ve c2 / a2'ye bakıldığında, 3 ilişki vardır: a1a2 = a c1c2 = c a1c2 + a2c1 = -b (Çapraz toplam). Bu örnekte, 2 gerçek kök: c1 / a1 = -2/1 ve c2 / a2 = 7/2. a = 12 = 2 c = -27 = -14 -b = a1c2 + a2c1 = -22 + 17 = -4 + 7 = 3. Kuadratik denklem şöyledir: Cevap: 2x ^ 2 - 3x - 14 = 0 (1) Kontrol Et: (1) 'in 2 gerçek kökünü yeni AC Yöntemi ile bulun. Dönüştürülen denklem: x ^ 2 - 3x - 28 =
İkinci dereceden denklemleri çözmek için geliştirilmiş ikinci dereceden formül nedir?

Sadece bir ikinci dereceden formül var, yani x = (- b + -sqrt (b ^ 2-4ac)) / (2a). Ax ^ 2 + bx + c = 0'daki x genel çözümü için, x = (- - b + -sqrt (b ^ 2-4ac)) / (2a) karesel formülünü türetebiliriz. ax ^ 2 + bx + c = 0 ax ^ 2 + bx = -c 4a ^ 2x ^ 2 + 4abx = -4ac 4a ^ 2x ^ 2 + 4abx + b ^ 2 = b ^ 2-4ac (2ax + b) ^ 2 = b ^ 2-4ac 2ax + b = + - sqrt (b ^ 2-4ac) 2ax = -b + -qr (b ^ 2-4ac): .x = (- b + -sqrt b ^ 2-4ac)) / (2a)
İkinci dereceden eşitsizliklerin sistemlerini çözme. Çift sayı çizgisini kullanarak ikinci dereceden bir eşitsizlik sistemi nasıl çözülür?

İkili sayı çizgisini bir değişkende (Nghi H Nguyen tarafından yazılmış) herhangi bir 2 veya 3 ikinci dereceden eşitsizliği olan herhangi bir sistemi çözmek için çift değişkenli bir sayı çizgisi kullanarak kullanabiliriz. Örnek 1. Sistemi çözün: f (x) = x ^ 2 + 2x - 3 <0 (1) g (x) = x ^ 2 - 4x - 5 <0 (2) Önce çöz, f (x) = 0 - -> 2 gerçek kök: 1 ve -3 2 gerçek kök arasında, f (x) <0 g (x) = 0 -> 2 gerçek kök arasında: -1 ve 5 2 gerçek kök arasında, g (x) <0 İkili bir sayı satırında ayarlanan 2 ç