Bir vektörün büyüklüğü ve yönü vardır. Oysa bir skaler sadece büyüklüktedir.
Hız bir vektör olarak tanımlanır. Öte yandan hız skaler olarak tanımlanır.
Belirlemediğiniz için, bir vektör pozitif veya negatif olan bir 1D vektör kadar basit olabilir.
Bir vektör 2D kullanarak daha karmaşık olabilir. Vektör, Kartezyen koordinatlar, örneğin
Kartezyen koordinatları, küresel koordinatları, silindirik koordinatları veya başkalarını kullanarak hala 3D'de daha karmaşık olabilir.
Bu nedenle, yukarıdaki koordinat sistemlerinden birini kullanarak bir hız vektörü belirtilmelidir.
Vektör A = 125 m / s, batıdan 40 derece kuzeyde. B vektörü 185 m / s, batı yönünde 30 derece ve C vektörü 175 m / s 50 doğusundadır. A + B-C'yi vektör çözünürlük yöntemiyle nasıl buluyorsunuz?
Elde edilen vektör, 165.6 ° 'lik standart bir açıda 402.7m / s olacaktır. İlk olarak, her bir vektörü (burada standart biçimde verilen) dikdörtgen bileşenlere (x ve y) dönüştüreceksiniz. Ardından, x bileşenlerini bir araya getirip y bileşenlerini bir araya getireceksiniz. Bu size aradığınız cevabı verecek, fakat dikdörtgen şeklinde. Son olarak, sonucu standart forma dönüştürün. İşte nasıl: Dikdörtgen bileşenlere dönüşün A_x = 125 cos 140 ° = 125 (-0.766) = -95.76 m / s A_y = 125 sin 140 ° = 125 (0.643) = 80.35 m / s
Vektör A, 10 büyüklüğüne sahiptir ve pozitif x yönünde noktalara sahiptir. Vektör B'nin büyüklüğü 15'tir ve pozitif x ekseni ile 34 derecelik bir açı yapar. A - B'nin büyüklüğü nedir?
8.7343 birim. AB = A + (- B) = 10 / _0 ^ @ - 15 / _34 ^ @ = sqrt ((10-15cos34 ^ @) ^ 2+ (15sin34 ^ @) ^ 2) / _ tan ^ (- 1) ((- 15sin34 ^ @) / (10-15cos34 ^ @)) = 8.7343 / _73.808 ^ @. Dolayısıyla, büyüklüğü sadece 8.7343 birimdir.
Sıfır olmayan iki vektör A (vektör) ve B (vektör) arasındaki açının 120 (derece) ve sonuç olarak C (vektör) olmasına izin verin. O zaman aşağıdakilerden hangisi doğrudur?
Seçenek (b) bb A * bb B = abs bbA abs bbB çünkü cos (120 ^ o) = -1/2 abs bbA abs bbB bbC = bbA + bbB C ^ 2 = (bbA + bbB) * (bbA + bbB) = A ^ 2 + B ^ 2 + 2 bbA * bb B = A ^ 2 + B ^ 2 - abs bbA abs bbB qquad kare abs (bbA - bbB) ^ 2 = (bbA - bbB) * (bbA - bbB) = A ^ 2 + B ^ 2 - 2bbA * bbB = A ^ 2 + B ^ 2 + abs bbA abs bbB qquad üçgen abs (bbA - bbB) ^ 2 - C ^ 2 = üçgen - kare = 2 abs bbA abs bbB:. C ^ 2 lt abs (bbA - bbB) ^ 2, qquad bbA, bbB ne bb0:. abs bb C lt abs (bbA - bbB)