Bir çizginin denklemi 2x + 3y - 7 = 0, bul: - (1) çizginin eğimi (2) verilen çizgiye dik ve çizginin kesişme noktasından geçen çizginin denklemi x-y + 2 = 0 ve 3x + y-10 = 0?
-3x + 2y-2 = 0 renk (beyaz) ("ddd") -> renk (beyaz) ("ddd") y = 3 / 2x + 1 İlk prensiplerin nasıl çalıştığını gösteren çok detaylı ilk bölüm. Bunlara bir kez alışıp kısayolları kullanarak çok daha az satır kullanacaksınız. color (blue) ("İlk denklemlerin kesişimini belirleyin") x-y + 2 = 0 "" ....... Denklem (1) 3x + y-10 = 0 "" .... Denklem ( 2) Eqn (1) 'in her iki tarafından -y + 2 = -x veren x'i çıkar. Her iki tarafı da (-1) + y-2 = + x "" .......... ile eşitle (1_a) ) Eqn (2) renkli (yeşil) (3 renk (kırmızı) (x) +
Çizginin denklemi -3y + 4x = 9'dur. Çizgiye paralel ve çizgiden geçen çizginin denklemini nasıl yazıyorsunuz (-12,6)?
Y-6 = 4/3 (x + 12) Noktanın gradyan formunu kullanacağız, çünkü çizginin (-12,6) üzerinden geçeceği bir noktaya sahibiz ve paralel kelimesi iki çizginin degradesini belirtir aynı olmalı. Paralel çizginin gradyanını bulmak için, ona paralel olan çizginin gradyanını bulmalıyız. Bu satır -3y + 4x = 9'dur ve y = 4 / 3x-3 şeklinde basitleştirilebilir. Bu bize 4/3 derecesini verir. Şimdi denklemini yazmak için bu formüle koyduğumuz y-y_1 = m (x-x_1), (x_1, y_1) çalıştıkları nokta ve m degrade.
Çizgi CD, C (3, -5) ve D (6, 0) noktalarından geçer. Çizginin denklemi nedir?
Satır CD'sinin denklemi renklidir (kahverengi) (y = (5/6) x - 15/2 Satırda iki koordinat verilen bir satırın denklemi formül (y - y_1) / (y_2 - y_1) = ( x - x_1) / (x_2 - x_1) Verilen C (3, -5), D (6, 0) Dolayısıyla, denklem (y - y_c) / (y_d - y_c) = (x - x_c) / (x_d'dir. - x_c) (y + 5) / (0 + 5) = (x - 3) / (6 - 3) (y + 5) / 5 = (x - 3) / 6 6 (y + 5) = 5 ( x - 3) çapraz çarpım 6y + 30 = 5x - 15 Parantezlerin çıkarılması 6y = 5x - 15 - 30 6y = 5x - 45 y = (5 (x - 9)) / 6 Satır CD’nin denklemi renkli (kahverengi) (y = (5/6) x - 15/2 standart formda renk (mavi) (y = mx + c