Cevap:
Açıklama:
Seri
#color (white) (.) underbrace (3 renk (beyaz) (…) 6) renk (beyaz) (….) underbrace (6 renk (beyaz) (…) 4) renk (beyaz) (….) underbrace (4 renk (beyaz) (…) 8) renk (beyaz) (….) underbrace (8 renk (beyaz) (…) 6) renk (beyaz) (. …) underbrace (6 renk (beyaz) (…) 12) renk (beyaz) (….) underbrace (12 renk (beyaz) (…) 10) #
# × 2 renk (beyaz) (….) -2 renk (beyaz) (….) × 2 renk (beyaz) (….) -2 renk (beyaz) (…..) × 2 renk (beyaz) (…….) -2 renk (beyaz) (.) #
Eğer
#underbrace (10 renk (beyaz) (…) chi) #
#×2#
Bir sayı iki kere eksi bir ikinci sayı -1'dir. İkinci sayıya iki kere iki kez eklenir ve ilk sayı 9 olur. İki sayı nedir?
(x, y) = (1,3) x ve y diyeceğim iki sayımız var. İlk cümle "Bir sayı iki eksi bir ikinci sayı -1" der ve şunu yazabilirim: 2x-y = -1 İkinci cümle, "İki sayı ilk sayı 9'a iki kez 9 eklenir" şöyle yazabilir: 2y + 3x = 9 Her iki ifadenin de satırlar olduğunu ve çözebileceğimiz bir çözüm varsa, bu iki satırın kesiştiği nokta bizim çözümümüz olduğunu fark edelim. Hadi bulalım: Y için çözülecek ilk denklemi tekrar yazacağım, sonra ikinci denklemle değiştireceğim. Bunun gibi: 2x-y = -1 2x + 1 = y ve şimdi de ikame: 2y + 3x
Gerçek sayı, tam sayı, tam sayı, rasyonel sayı ve irrasyonel sayı nedir?
Aşağıdaki Açıklama Rasyonel sayılar 3 farklı biçimdedir; tamsayılar, kesirler ve 1/3 gibi ondalık ya da sonlandırıcı sayılar. İrrasyonel sayılar oldukça 'dağınıktır'. Kesirler olarak yazılamazlar, asla bitmezler, tekrar etmeyen ondalık sayılardır. Buna bir örnek π değeridir. Tam sayıya tam sayı adı verilebilir ve pozitif veya negatif bir sayı veya sıfırdır. Buna bir örnek 0, 1 ve -365'tir.
Sqrt21 gerçek sayı, rasyonel sayı, tam sayı, Tam sayı, İrrasyonel sayı mı?
Bu irrasyonel bir sayıdır ve bu nedenle gerçektir. İlk önce sqrt (21) 'in gerçek bir sayı olduğunu ispatlayalım, aslında tüm pozitif gerçek sayıların karekökü gerçektir. Eğer x, gerçek bir sayı ise, o zaman pozitif sayılar için tanımlarız sqrt (x) = "sup" {yinRR: y ^ 2 <= x}. Bu, y = 2 <= x olacak şekilde tüm gerçek sayılara bakacağımız anlamına gelir ve supremum adı verilen tüm bu y değerlerinden daha büyük olan en küçük gerçek sayıyı alırız. Negatif sayılar için bu y'ler yoktur, çünkü