Cevap:
Açıklama:
Kökleri çarptıkça, denklem olabilir
ama 3'ü dışarı çıkarabiliriz.
Cevap:
Açıklama:
# "" Renk (mavi) "" radikallerin kanunu "kullanılarak
# • Renk (beyaz) (x) sqrtaxxsqrtbhArrsqrt (ab) #
# RArrsqrt3xx3xxsqrt21 = 3xxsqrt (3xx21) = 3sqrt63 #
# 3sqrt63 = 3 (sqrt (9xx7)) = 3 (sqrt9xxsqrt7) = 3 (3sqrt7) = 9sqrt7 #
Sqrt6'yı (sqrt3 + 5 sqrt2) nasıl basitleştirirsiniz?
10sqrt3 + 3sqrt2 sqrt6'yı dağıtmanız gerekir. İşaretin altındaki değer ne olursa olsun, radikallerle çarpılabilir. Sfrt6 ile eşittir sqrt6 * sqrt3. sqrt18 -> (sqrt (9 * 2)) -> 3sqrt2 (sqrt9 = 3) sqrt6 * 5sqrt2 = 5sqrt12-> 5 * sqrt (3 * 4) sqrt4 = 2 -> 5 * 2sqrt3 = 10sqrt3 Hence, 10sqrt3 + 3sqrt3 = 10sqrt3
Sqrt3 - sqrt27 + 5sqrt12 aygıtını nasıl basitleştirirsiniz?
8sqrt (3) sqrt (3) - sqrt (27) + 5sqrt (12) sqrt (3) - sqrt (9 * 3) + 5sqrt (12) renk (mavi) ("27 faktör" 9 * 3) sqrt ( 3) - 3sqrt (3) + 5sqrt (12) renk (mavi) ("9 mükemmel bir kare, bu nedenle 3 dışarı çıkar") sqrt (3) -3sqrt (3) + 5sqrt (4 * 3) renk (mavi ) ("12 faktör" içine 4 x 3) sqrt (3) -3sqrt (3) + 5 * 2sqrt (3) renk (mavi) ("4 mükemmel bir kare, bu yüzden 2 çıkar") sqrt (3) -3sqrt (3) + 10sqrt (3) renk (mavi) ("Basitleştirmek için" 5 * 2 = 10) Artık her şey sqrt (3) cinsinden benziyor, basitleştirebiliriz: sqrt (3) -3sqr
(Sqrt5) / (sqrt5-sqrt3) 'ü nasıl basitleştirirsiniz?
(5 + sqrt (15)) / 2 => sqrt (5) / (sqrt (5) - sqrt (3)) Çarpın ve bölü (sqrt (5) + sqrt (3)) => sqrt (5) / (sqrt (5) - sqrt (3)) × (sqrt (5) + sqrt (3)) / (sqrt (5) + sqrt (3)) => (sqrt (5) (sqrt (5) + sqrt ( 3))) / ((sqrt (5) - sqrt (3)) (sqrt (5) + sqrt (3)) => (sqrt (5) (sqrt (5) + sqrt (3))) / (( sqrt (5)) ^ 2 - (sqrt (3)) ^ 2) renk (beyaz) (..) [ (a - b) (a + b) = a ^ 2 - b ^ 2] => (sqrt (5) sqrt (5) + sqrt (5) sqrt (3)) / (5 - 3) => (5 + sqrt (15)) / 2