Cevap:
Çözüm çok ayrıntılı olarak verilmiştir, böylece her şeyin nereden geldiğini görebilirsiniz.
Alan artışı
Açıklama:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Orijinal alan
Yeni alan
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Değişimi orijinal alanın bir bölümü olarak ifade ettik:
Faktörü
Bu aynıdır:
Bu aynıdır:
Fakat
İki saat yüzünün alanları 16:25. Küçük saat yüzünün yarıçapının, büyük saat yüzünün yarıçapına oranı nedir? Büyük saat yüzünün yarıçapı nedir?
5 A_1: A_2 = 16: 25 A = pir ^ 2 => pir_1 ^ 2: pir_2 ^ 2 = 16: 25 => (pir_1 ^ 2) / (pir_2 ^ 2) = 16/25 => (r_1 ^ 2) / (r_2 ^ 2) = 4 ^ 2/5 ^ 2 => r_1 / r_2 = 4/5 => r_1: r_2 = 4: 5 => R_2 = 5
Büyük dairenin yarıçapı, küçük dairenin yarıçapının iki katı uzunluğundadır. Çörek alanı 75 pi'dir. Küçük (iç) dairenin yarıçapını bulun.
Küçük yarıçapı 5'tir. R = iç dairenin yarıçapı. Daha sonra büyük çemberin yarıçapı 2r'dir Referanstan, bir halka alanı için denklemi elde ettik: A = pi (R ^ 2-r ^ 2) R için 2r ikame maddesi: A = pi ((2r) ^ 2- r ^ 2) Basitleştirin: A = pi ((4r ^ 2- r ^ 2) A = 3pir ^ 2 Verilen alandaki alternatifler: 75pi = 3pir ^ 2 Her iki tarafı da 3pi ile bölün: 25 = r ^ 2 r = 5
Bir dairenin çapı yarıçapıyla doğru orantılıysa ve 2 inç çaplı bir dairenin yaklaşık 6.28 inçlik bir çevresi varsa, 15 inçlik bir dairenin çevresi nedir?
Sorunun ilk kısmının, bir dairenin çevresinin çapıyla doğrudan orantılı olduğunu söylemesi gerektiğine inanıyorum. Bu ilişki bizim nasıl yaptığımız. Küçük dairenin çapını ve çevresini sırasıyla "2 inç" ve "6.28 inç" olarak biliyoruz. Çevre ve çap arasındaki oranı belirlemek için, çevreyi pi'ye çok benzeyen "=" 3.14 "içinde" 6.28 "/" 2'de "6.28" / "2" çapına böleriz. Artık oranı bildiğimize göre, dairenin çevresini hesaplamak için, daha bü