Cevap:
Açıklama:
Verilen:
#S = m + nsqrt (-p) #
-
# S # ek kimliği içerir:# 0 + 0sqrt (-p) = 0color (beyaz) (((1/1), (1/1))) # -
# S # ek olarak kapalıdır:# (m_1 + n_1 sqrt (-p)) + (m_2 + n_2 sqrt (-p)) = (m_1 + m_2) + (n_1 + n_2) sqrt (-p) renk (beyaz) (((1/1), (1/1))) # -
# S # Katkı tersi altında kapatılır:# (m_1 + n_1 sqrt (-p)) + (-m_1 + -n_1 sqrt (-p)) = 0 renk (beyaz) ((((1/1), (1/1))) # -
# S # çarpma altında kapalı:# (m_1 + n_1 sqrt (-p)) (m_2 + n_2 m2 (-p)) = (m_1m_2-pn_1n_2) + (m_1n_2 + m_2n_1) sqrt (-p) renk (beyaz) (((1/1), (1/1))) #
Yani
Bir emilim olmadığından, ideal değildir.
Örneğin:
#sqrt (3) (1 + 0sqrt (-p)) = sqrt (3)! S # içinde
Varsayalım ki z = x + yi, ki burada x ve y gerçek sayılardır. (İz-1) / (z-i) gerçek bir sayı ise, (x, y) 'nin (0, 1), ne zaman eşit olmadığını, x ^ 2 + y ^ 2 = 1 olduğunu gösterin.
Lütfen aşağıya bakınız, z = x + iy (iz-1) / (zi) = (i (x + iy) -1) / (x + iy-i) = (ix-y-1) / (x + i (y-1)) = (ix- (y + 1)) / (x + i (y-1)) xx (xi (y-1)) / (xi (y-1)) = ((ix - (y + 1)) (xi (y-1))) / (x ^ 2 + (y-1) ^ 2) = (ix ^ 2 + x (y-1) -x (y + 1) + i (y ^ 2-1)) / (x ^ 2 + (y-1) ^ 2) = (x ((y-1) - (y + 1)) + i (x ^ 2 + y ^ 2- 1)) / (x ^ 2 + (y-1) ^ 2) = (-2x + i (x ^ 2 + y ^ 2-1)) / (x ^ 2 + (y-1) ^ 2) As (iz-1) / (zi) gerçektir (x ^ 2 + y ^ 2-1) = 0 ve x ^ 2 + (y-1) ^ 2! = 0 Şimdi x ^ 2 + (y-1) olarak ^ 2 iki karenin toplamıdır, yalnızca x = 0 ve y = 1 olduğunda sıfır olabilir, yani (x, y) (0,1), x ^ 2 + y ^ 2
Bir atomun elektrik yüklü olup olmadığını veya elektriksel olarak nötr olup olmadığını ne belirler?
Aşağıya bakınız. Elektrik yükü "elektron" ve "proton" olarak adlandırılan atom altı parçacıklarla belirlenir. Elektronlar -1 negatif yüke sahipken protonlar +1 pozitif yüke sahiptir. Periyodik tabloya bakıldığında, her bir elementin atom numarası elektriksel olarak nötr olduğunda sahip olduğu proton ve elektronlara eşittir. Tarafsızlık net 0 elektrik yükü olarak sınıflandırılır (ör. Nötr Helyumdaki 2 proton ve 2 elektron elektrik denklemini oluşturur (+2) + (-2) = 0 net yük). Atomlar her zaman elektriksel olarak nötr değildir, biz bu atomlara &
Sistemin y = -2x + 1 ve y = -1 / 3x - 3'ün bir çözümü olmadığını veya sonsuz sayıda çözümü olup olmadığını nasıl anlarsınız?
Çözümleri grafiksel olarak bulmaya çalışırsanız, denklemlerin her ikisini de düz çizgiler halinde çizersiniz. Çözüm (ler), çizgilerin kesiştiği yerdir. Bunların her ikisi de düz çizgiler olduğundan, en fazla bir çözüm olacaktır. Çizgiler paralel olmadığından (gradyanlar farklıdır), bir çözüm olduğunu biliyorsunuzdur. Bunu grafiksel olarak tanımlandığı gibi veya cebirsel olarak bulabilirsiniz. y = -2x + 1 ve y = -1 / 3x-3 So -2x + 1 = -1 / 3x-3 1 = 5 / 3x-3 4 = 5/3 x x = 12/5 = 2.4