
Cevap:
Açıklama:
Diyelim ki gezegenin çekirdeğinin kütlesi
Yani, çekirdek yüzeyindeki alan
Ve, kabuğun yüzeyinde olacak
Verilen, her ikisi de eşit
yani,
veya,
veya,
Şimdi,
ve,
Bu nedenle,
Yani,
veya,
İki saat yüzünün alanları 16:25. Küçük saat yüzünün yarıçapının, büyük saat yüzünün yarıçapına oranı nedir? Büyük saat yüzünün yarıçapı nedir?

5 A_1: A_2 = 16: 25 A = pir ^ 2 => pir_1 ^ 2: pir_2 ^ 2 = 16: 25 => (pir_1 ^ 2) / (pir_2 ^ 2) = 16/25 => (r_1 ^ 2) / (r_2 ^ 2) = 4 ^ 2/5 ^ 2 => r_1 / r_2 = 4/5 => r_1: r_2 = 4: 5 => R_2 = 5
Büyük dairenin yarıçapı, küçük dairenin yarıçapının iki katı uzunluğundadır. Çörek alanı 75 pi'dir. Küçük (iç) dairenin yarıçapını bulun.

Küçük yarıçapı 5'tir. R = iç dairenin yarıçapı. Daha sonra büyük çemberin yarıçapı 2r'dir Referanstan, bir halka alanı için denklemi elde ettik: A = pi (R ^ 2-r ^ 2) R için 2r ikame maddesi: A = pi ((2r) ^ 2- r ^ 2) Basitleştirin: A = pi ((4r ^ 2- r ^ 2) A = 3pir ^ 2 Verilen alandaki alternatifler: 75pi = 3pir ^ 2 Her iki tarafı da 3pi ile bölün: 25 = r ^ 2 r = 5
Patlamış bir tankerden petrol sızıntısı okyanusun yüzeyindeki bir daireye yayılır. Dökülme alanı 9π m² / dak oranında artar. Yarıçap 10 m olduğunda döküntünün yarıçapı ne kadar hızlı artmaktadır?

Dr. | _ (n = 10) = 0,45 m // dak. Bir dairenin alanı A = pi r ^ 2 olduğundan, elde etmek için her iki taraftaki farkı alabiliriz: dA = 2pirdr Dolayısıyla yarıçap, dr = (dA) / (2pir) = (9pi) / (2pir ) Böylece, dr | _ (r = 10) = 9 / (2xx10) = 0.45m // dk.