Cevap:
Evet.
Aşağıya bakınız
Açıklama:
ben
Herhangi bir paralel eleman devresinde: R, C,: direnç, kapasitans (ve veya endüktans), 2 elemanın tamamındaki voltaj aynıdır, ayrı elemanlardan geçen akım ve faz farklıdır.
Gerilim ortak faktör olduğundan, vektör diyagramı gerilim referans vektörüne göre 2 akıma sahip olacaktır.
Vektör A = 125 m / s, batıdan 40 derece kuzeyde. B vektörü 185 m / s, batı yönünde 30 derece ve C vektörü 175 m / s 50 doğusundadır. A + B-C'yi vektör çözünürlük yöntemiyle nasıl buluyorsunuz?
Elde edilen vektör, 165.6 ° 'lik standart bir açıda 402.7m / s olacaktır. İlk olarak, her bir vektörü (burada standart biçimde verilen) dikdörtgen bileşenlere (x ve y) dönüştüreceksiniz. Ardından, x bileşenlerini bir araya getirip y bileşenlerini bir araya getireceksiniz. Bu size aradığınız cevabı verecek, fakat dikdörtgen şeklinde. Son olarak, sonucu standart forma dönüştürün. İşte nasıl: Dikdörtgen bileşenlere dönüşün A_x = 125 cos 140 ° = 125 (-0.766) = -95.76 m / s A_y = 125 sin 140 ° = 125 (0.643) = 80.35 m / s
Vektör A, 10 büyüklüğüne sahiptir ve pozitif x yönünde noktalara sahiptir. Vektör B'nin büyüklüğü 15'tir ve pozitif x ekseni ile 34 derecelik bir açı yapar. A - B'nin büyüklüğü nedir?
8.7343 birim. AB = A + (- B) = 10 / _0 ^ @ - 15 / _34 ^ @ = sqrt ((10-15cos34 ^ @) ^ 2+ (15sin34 ^ @) ^ 2) / _ tan ^ (- 1) ((- 15sin34 ^ @) / (10-15cos34 ^ @)) = 8.7343 / _73.808 ^ @. Dolayısıyla, büyüklüğü sadece 8.7343 birimdir.
Sıfır olmayan iki vektör A (vektör) ve B (vektör) arasındaki açının 120 (derece) ve sonuç olarak C (vektör) olmasına izin verin. O zaman aşağıdakilerden hangisi doğrudur?
Seçenek (b) bb A * bb B = abs bbA abs bbB çünkü cos (120 ^ o) = -1/2 abs bbA abs bbB bbC = bbA + bbB C ^ 2 = (bbA + bbB) * (bbA + bbB) = A ^ 2 + B ^ 2 + 2 bbA * bb B = A ^ 2 + B ^ 2 - abs bbA abs bbB qquad kare abs (bbA - bbB) ^ 2 = (bbA - bbB) * (bbA - bbB) = A ^ 2 + B ^ 2 - 2bbA * bbB = A ^ 2 + B ^ 2 + abs bbA abs bbB qquad üçgen abs (bbA - bbB) ^ 2 - C ^ 2 = üçgen - kare = 2 abs bbA abs bbB:. C ^ 2 lt abs (bbA - bbB) ^ 2, qquad bbA, bbB ne bb0:. abs bb C lt abs (bbA - bbB)