Bunu biliyoruz eğer
Yani, ihtiyacımız olan sadece verilen iki vektörün çarpım çarpımını bulmak.
Yani,
Yani birim vektör
Vektör A = 125 m / s, batıdan 40 derece kuzeyde. B vektörü 185 m / s, batı yönünde 30 derece ve C vektörü 175 m / s 50 doğusundadır. A + B-C'yi vektör çözünürlük yöntemiyle nasıl buluyorsunuz?
Elde edilen vektör, 165.6 ° 'lik standart bir açıda 402.7m / s olacaktır. İlk olarak, her bir vektörü (burada standart biçimde verilen) dikdörtgen bileşenlere (x ve y) dönüştüreceksiniz. Ardından, x bileşenlerini bir araya getirip y bileşenlerini bir araya getireceksiniz. Bu size aradığınız cevabı verecek, fakat dikdörtgen şeklinde. Son olarak, sonucu standart forma dönüştürün. İşte nasıl: Dikdörtgen bileşenlere dönüşün A_x = 125 cos 140 ° = 125 (-0.766) = -95.76 m / s A_y = 125 sin 140 ° = 125 (0.643) = 80.35 m / s
(2i - 3 j + k) ve (2i + j - 3k) içeren düzlemde normal olan birim vektör nedir?
Vecu = <(sqrt (3)) / 3, (sqrt (3)) / 3, (sqrt (3)) / 3> İki vektör içeren bir düzleme normal (dik, dik) olan bir vektör de normaldir verilen vektörlerin her ikisi de. Verilen iki vektörün çarpımını alarak normal vektörü bulabiliriz. Daha sonra o vektör ile aynı yönde bir birim vektör bulabiliriz. İlk olarak, her vektörü vektör biçimine yazın: veca = <2, -3,1> vecb = <2,1, -3> Çapraz ürün, vecaxxvecb şurada bulunur: vecaxxvecb = abs ((veci, vecj, veck), (2, -3,1), (2,1, -3)) i bileşeni için şunları yapt
(İ -2j + 3k) ve (i - j + k) içeren düzlemde dik olan birim vektör nedir?
Bu çözümü bulmak için iki adım vardır: 1. İki vektörün çarpım çarpımını bulun ve bunları içeren düzleme dik olan bir vektör bulun ve 2. vektörü birim uzunluğuna sahip olacak şekilde normalleştirin. Bu problemi çözmedeki ilk adım, iki vektörün çapraz ürününü bulmaktır. Tanım olarak çapraz ürün, iki vektörün çarpıldığı düzleme dik olan bir vektör bulur. (i 2j + 3k) xx (i j + k) = ((-2 * 1) - (3 * -1)) i + ((3 * 1) - (1 * 1)) j + ((1 * -1) - (- 2 * 1)) k = (-2 - (- 3)) i