Cevap:
Açıklama:
Parabolün Denklemi
#color (blue) "tepe formu" # olduğunu.
#color (kırmızı) # (çubuk (ul (|)) | renk (beyaz) (2/2) renk (siyah) (y (x h) ^ 2 + k) Renk (beyaz) (2/2) =) (h, k) tepe noktasının koordinatlarıdır ve a sabittir.
# "burada" (h, k) = (- 15, -4) #
# RArry = a (x + 15) ^ 2-4 #
# "parabolün içinden geçtiği noktayı kullanmak için" #
# "kullanarak" (15,5) "yani x = 15 ve y = 5" #
# RArr5 bir (15 + 15) ^ 2-4 # =
# RArr900a = 9rArra = 1/100 #
# rArry = 1/100 (x + 15) ^ 2-4larrcolor (kırmızı) "tepe biçiminde" # grafik {1/100 (x + 15) ^ 2-4 -20, 20, -10, 10}
Bir parabolün tepe noktasına (4,7) sahip olduğunu ve aynı zamanda noktadan (-3,8) geçtiğini varsayalım. Parabolün tepe formundaki denklemi nedir?
Aslında, özelliklerinizi karşılayan iki parabol (tepe biçiminde) vardır: y = 1/49 (x- 4) ^ 2 + 7 ve x = -7 (y-7) ^ 2 + 4 İki köşe formu vardır: y = a (x- h) ^ 2 + k ve x = a (yk) ^ 2 + h ((h, k) tepe noktasıdır ve "a" nın değeri başka bir nokta kullanılarak bulunabilir. Formlardan birini dışlamak için hiçbir nedenimiz yoktur, bu yüzden verilen köşeyi ikisine de yerleştiririz: y = a (x- 4) ^ 2 + 7 ve x = a (y-7) ^ 2 + 4 Her iki değeri de çöz (-3,8) noktasını kullanarak: 8 = a_1 (-3-4) ^ 2 + 7 ve -3 = a_2 (8-7) ^ 2 + 4 1 = a_1 (-7) ^ 2 ve - 7 = a_2 (1) ^ 2 a_1 = 1/49 ve
(0, 0) 'da tepe noktası olan ve noktadan (-1, -64) geçen parabolün denklemi nedir?
F (x) = - 64x ^ 2 Eğer köşe (0 | 0) konumundaysa, f (x) = ax ^ 2 Şimdi, biz sadece (-1, -64) -64 = a * (- 1) ^ 2 = aa = -64 f (x) = - 64x ^ 2
(0, 0) 'da tepe noktası olan ve noktadan (-1, -4) geçen parabolün denklemi nedir?
Y = -4x ^ 2> "parabolün denklemini" color (blue) "vertex formunda" dır. • color (white) (x) y = a (xh) ^ 2 + k "burada" (h, k) ", tepe noktasının koordinatlarıdır ve" "burada" "burada" (h, k) = (0,0) "dolayısıyla" y = ax ^ 2 "" (-1, -4) "yerine" -4 = ay = -4x ^ 2larrcolor (mavi) "denkleminin" denklemini "bulmak için {grafik { -4x ^ 2 [-10, 10, -5, 5]}