Cevap:
Puanlar
Açıklama:
Genişletebiliriz
Açıkça,
Bu kritik noktaların doğasını test etmek için ikinci türevleri buluyoruz:
Dolayısıyla ayrımcı:
İlk üç kritik noktayı takmak şunları verir:
Son kritik noktaya takmak,
Aşağıda kontur haritasının bir resmi (seviye eğrilerinin)
F (x, y) = (x + y + 1) ^ 2 / (x ^ 2 + y ^ 2 + 1) ekstrema ve eyer noktaları nelerdir?
Bizde: f (x, y) = (x + y + 1) ^ 2 / (x ^ 2 + y ^ 2 + 1) 1. Adım - Kısmi Türevleri Bulun İki ya da daha fazla bir fonksiyonun kısmi türevini hesaplıyoruz diğer değişkenler sabit olarak değerlendirilirken, bir değişkenle wrt farklılaşarak değişkenler. Böylece: İlk Türevler: f_x = {(x ^ 2 + y ^ 2 + 1) (2 (x + y + 1)) - - ((x + y + 1) ^ 2) (2x)} / (x ^ 2 + y ^ 2 + 1) ^ 2 = {2 (x ^ 2 + y ^ 2 + 1) (x + y + 1) - 2x (x + y + 1) ^ 2} / (x ^ 2 + y ^ 2 + 1) ^ 2 = {2 (x + y + 1) (x ^ 2 + y ^ 2 + 1- x ^ 2-xy-x)} / (x ^ 2 + y ^ 2 + 1) ^ 2 = {2 (x + y + 1) (y ^ 2-xy-x + 1)} / (x ^ 2 + y ^ 2 + 1) ^ 2 f_y = { (x ^ 2
F (x) = 2x ^ 2 lnx'in ekstrema ve eyer noktaları nelerdir?
Tanım alanı: f (x) = 2x ^ 2lnx, (0, + oo) içindeki x aralığıdır. Fonksiyonun birinci ve ikinci türevlerini değerlendirin: (df) / dx = 4xlnx + 2x ^ 2 / x = 2x (1 + 2lnx) (d ^ 2f) / dx ^ 2 = 2 (1 + 2lnx) + 2x * 2 / x = 2 + 4lnx + 4 = 6 + lnx Kritik noktalar aşağıdakilerin çözümleridir: f '(x) = 0 2x (1 + 2lnx) = 0 ve x> 0: 1 + 2lnx = 0 lnx = -1 / 2 x = 1 / sqrt (e) Bu noktada: f '' (1 / sqrte) = 6-1 / 2 = 11/2> 0, böylece kritik nokta yerel minimumdur. Eyer noktaları aşağıdakilerin çözümleridir: f '' (x) = 0 6 + lnx = 0 lnx = -6 x = 1 / e ^ 6 ve f '
[-Pi, pi] 'daki x, y aralığında f (x, y) = 6 sin (-x) * sin ^ 2 (y) ekstrema ve eyer noktaları nelerdir?
Elimizde: f (x, y) = 6sin (-x) sin ^ 2 (y) = = -6sinxsin ^ 2y 1. Adım - Kısmi Türevleri Bulun Kısmi türevini hesapladık diğer değişkenler sabit olarak değerlendirilirken, bir değişkene göre wrt farklılaştırarak iki veya daha fazla değişkenli bir fonksiyon. Böylece: İlk Türevler: f_x = -6cosxsin ^ 2y f_y = -6sinx (2sinycosy) = -6sinxsin2y 2cos2y) = -12sinxcos2y İkinci Kısmi Çapraz Türevler şunlardır: f_ (xy) = -6cosxsin2y f_ (yx) = -6cosx (2sinycosy) = -6cosxsin2y f (x, y) sürekliliği nedeniyle aynıdır. Adım 2 - Kritik Noktaları Belirleyin f_x = f_y = 0 eşzamanlı çö