İki saat yüzünün alanları 16:25. Küçük saat yüzünün yarıçapının, büyük saat yüzünün yarıçapına oranı nedir? Büyük saat yüzünün yarıçapı nedir?
5 A_1: A_2 = 16: 25 A = pir ^ 2 => pir_1 ^ 2: pir_2 ^ 2 = 16: 25 => (pir_1 ^ 2) / (pir_2 ^ 2) = 16/25 => (r_1 ^ 2) / (r_2 ^ 2) = 4 ^ 2/5 ^ 2 => r_1 / r_2 = 4/5 => r_1: r_2 = 4: 5 => R_2 = 5
Yatay bir yüzeye dayanarak şekilde gösterildiği gibi iki özdeş merdiven düzenlenmiştir. Her bir merdivenin kütlesi M ve uzunluk L'dir. Bir tepe noktası (M) tepe noktasından (P) asılıdır. Sistem dengede ise, sürtünme yönünü ve büyüklüğünü buluyorsunuz?
Sürtünme diğer merdivene doğru yataydır. Büyüklüğü (M + m) / 2 tan alfa, alfa = bir merdiven ile PN arasındaki yatay yüzeye yükseklik arasındaki açıdır, PAN üçgeni, PA PA ve dikey PN yüksekliğine göre oluşturulan dik açılı bir üçgendir. yüzey. Dengedeki dikey kuvvetler, merdivenlerin ağırlıklarını ve apeks P'deki ağırlığı dengeleyen eşit reaksiyonlar R'dir. Yani, 2 R = 2 Mg + mg. R = (M + m / 2) g ... (1) Merdivenlerin kaymasını engelleyen eşit yatay sürtünme F ve F iç içedir ve birbirlerini dengelerler. R ve F&
(X - 5) ^ 2 = 4 (y + 2) tarafından tanımlanan parabolün tepe noktası, odak noktası ve yönlendirmesi nedir?
(5, -2), (5, -3), y = -1> "dikey olarak açılan bir parabolün standart şekli" • renkli (beyaz) (x) (xh) ^ 2 = 4a (yk) "dir. "(h, k)", tepe noktasının koordinatlarıdır ve "", tepe noktadan odak noktasına olan mesafedir ve "" directrix "(x-5) ^ 2 = -4 (y + 2)" bu "" tepe noktasıyla "= (5, -2)" ve "4a = -4rArra = -1" Odak "= (h, a + k) = (5, -1-2) = (5, -3) "directrix" y = -a + k = 1-2 = -1 grafik {(x-5) ^ 2 = -4 (y + 2) [-10, 10, -5, 5]}