Cevap:
Açıklama:
Biz biliyoruz ki
çünkü eğer bir eşkenar üçgenin açısı
yani
Büyük dairenin yarıçapı, küçük dairenin yarıçapının iki katı uzunluğundadır. Çörek alanı 75 pi'dir. Küçük (iç) dairenin yarıçapını bulun.
Küçük yarıçapı 5'tir. R = iç dairenin yarıçapı. Daha sonra büyük çemberin yarıçapı 2r'dir Referanstan, bir halka alanı için denklemi elde ettik: A = pi (R ^ 2-r ^ 2) R için 2r ikame maddesi: A = pi ((2r) ^ 2- r ^ 2) Basitleştirin: A = pi ((4r ^ 2- r ^ 2) A = 3pir ^ 2 Verilen alandaki alternatifler: 75pi = 3pir ^ 2 Her iki tarafı da 3pi ile bölün: 25 = r ^ 2 r = 5
Eşit yarıçapı r_1 olan ve aynı çizginin üzerinde bir çizgiye dokunan iki daire, birbirinden x uzaktadır. Üçüncü yarıçap dairesi r_2, iki daireye dokunur. Üçüncü dairenin yüksekliğini l'den nasıl buluruz?
Aşağıya bakınız. X'in perimetreler arasındaki mesafeyi varsayalım ve 2 (r_1 + r_2) gt x + 2r_1 olduğunu varsayalım; h = sqrt ((r_1 + r_2) ^ 2- (r_1 + x / 2) ^ 2) + r_1-r_2 s l ve C_2 çevresi arasındaki mesafedir.
Her biri diğer ikisine dokunmak için verilen yarıçapı R bir daire içinde 3 eşit yarıçapı r çevirin ve şekilde gösterildiği gibi verilen daireye bakın, o zaman gölgeli bölgenin alanı eşittir?
Gölgeli bölge için şu şekilde bir ifade oluşturabiliriz: A_ "gölgeli" = piR ^ 2 - 3 (pir ^ 2) -A_ "merkez", burada A_ "merkez" üç arasındaki küçük bölümün alanıdır Küçük daireler Bunun alanını bulmak için, üç küçük beyaz dairenin merkezlerini birleştirerek bir üçgen çizebiliriz. Her dairenin r yarıçapı olduğu için, üçgenin her bir tarafının uzunluğu 2r'dir ve üçgen eşkenardır, bu nedenle her birinin açısı 60 ° o'dur. Böylec