Cevap:
Korkarım basitleştirecek bir şey yok.
Açıklama:
dışlanan değeri
çünkü bölemeyebilirsin
Cevap:
Dışlanan değer:
Açıklama:
Ekleme ve çıkarma
sonra
Ayrıca şu şekilde de yazılabilir:
Şimdi görebiliriz eğer
Öyleyse, dışlanan değerlerin
F (x) = (x + 2) (x + 6) fonksiyonunun grafiği aşağıda gösterilmiştir. İşlev hakkında hangi ifade doğrudur? İşlev, tüm gerçek x değerleri için pozitifdir, burada x> –4. Fonksiyon, x'in tüm gerçek değerleri için negatiftir; burada –6 <x <–2.
Fonksiyon, x'in tüm gerçek değerleri için negatiftir; burada –6 <x <–2.
Doğrusal bir denklemin m eğimi, m = (y_2 - y_1) / (x_2-x_1) formülünü kullanarak bulunabilir, burada x değerleri ve y değerleri iki sıralı çiftten (x_1, y_1) ve (x_2) gelir , y_2), y_2 için çözülmüş eşdeğer bir denklem nedir?
İstediğiniz şeyin ne olduğundan emin değilim ama ... = işareti üzerindeki birkaç "Algaebric Movement" kullanarak y_2'yi izole etmek için ifadenizi yeniden düzenleyebilirsiniz: Başlangıç: m = (y_2-y_1) / (x_2-x_1) Alın ( x_2-x_1) başlangıçta bölüştüyse, eşittir işaretini geçtikten sonra çarpacağını hatırlatan = işareti boyunca sola: (x_2-x_1) m = y_2-y_1 Sonra işlemi değiştirmeyi hatırlatarak sola y_1 alacağız tekrar: çıkarma işleminden toplama: (x_2-x_1) m + y_1 = y_2 Artık yeniden düzenlenmiş ekspononu y_2 cinsinden "okuyabiliriz": y_
F (x) = - 2 (3 ^ (x + 1)) + 2 grafiğini nasıl çizersiniz ve etki alanını ve aralığını nasıl belirtirsiniz?
Domain {RR'de x} RR'de y aralığı Etki alanı için, x'in tanımlayamadığı şeyleri arıyoruz. İşlevleri yıkmak ve herhangi birinin x'in tanımsız olduğu bir sonuç verip getirmediğini görmek için bunu yapabiliriz. U = x + 1 x işlevi, sayı satırındaki tüm RR'ler için tanımlanır, yani tüm sayılar. s = 3 ^ u Bu fonksiyon ile u tüm RR'ler için tanımlanır, çünkü u negatif, pozitif veya 0 problemsiz olabilir. Bu nedenle, geçişlilik yoluyla x'in tüm RR'ler için tanımlandığını veya tüm sayılar için tanımlandığını biliyoruz