Cevap:
• y = -7 / 6x-11/6 #
Açıklama:
Verilen -
• y = 6 / 7x # Verilen çizginin eğimi
# M_1 = 6/7 #
İki satır dikey ise -
# m_1 xx m_2 = -1 #
# 6/7 xx m_2 = -1 #
# m_2 = -1 x x 7/6 = -7 / 6 #
Dik çizginin denklemi -
• y = mx + c #
# -3 = -7/6 (1) + c #
# C-7/6 = -3 #
# c = -3 +7/6 = (- 18 + 7) / 6 = -11 / 6 #
• y = -7 / 6x-11/6 #
Bir çizginin denklemi 2x + 3y - 7 = 0, bul: - (1) çizginin eğimi (2) verilen çizgiye dik ve çizginin kesişme noktasından geçen çizginin denklemi x-y + 2 = 0 ve 3x + y-10 = 0?
-3x + 2y-2 = 0 renk (beyaz) ("ddd") -> renk (beyaz) ("ddd") y = 3 / 2x + 1 İlk prensiplerin nasıl çalıştığını gösteren çok detaylı ilk bölüm. Bunlara bir kez alışıp kısayolları kullanarak çok daha az satır kullanacaksınız. color (blue) ("İlk denklemlerin kesişimini belirleyin") x-y + 2 = 0 "" ....... Denklem (1) 3x + y-10 = 0 "" .... Denklem ( 2) Eqn (1) 'in her iki tarafından -y + 2 = -x veren x'i çıkar. Her iki tarafı da (-1) + y-2 = + x "" .......... ile eşitle (1_a) ) Eqn (2) renkli (yeşil) (3 renk (kırmızı) (x) +
Noktadan (10, 5) geçen ve denklemi y = 54x 2 olan çizgiye dik olan bir çizginin denklemi nedir?
Çizginin -1/54 eğim ve denklem (10,5) ile denklemi renkli (yeşil) (x + 54y = 280 y = 54x - 2 Eğim m = 54 Dik çizginin eğimi m_1 = 1 / -m = -1 / 54 Eğimin -1/54 eğim ve denklemden (10,5) geçmesi y - 5 = - (1/54) * (x - 10) 54y - 270 = -x + 10 x + 54y = 280
Aşağıdaki ifadeyi kanıtlayın. ABC'nin herhangi bir dik üçgen, C noktasındaki dik açı olmasına izin verin. C'den hipoteneuse çizilen yükseklik, üçgeni birbirine ve orijinal üçgene benzeyen iki dik üçgene böler?
Aşağıya bakınız. Soruya göre, DeltaABC, / _C = 90 ^ @ ile dik bir üçgendir ve CD, hipotenüs AB'nin rakımıdır. Kanıt: Farz edelim ki / _ABC = x ^ @. Öyleyse, angleBAC = 90 ^ @ - x ^ @ = (90 - x) ^ @ Şimdi CD'ye dik AB. Böylece, angleBDC = angleADC = 90 ^ @. DeltaCBD'de angleBCD = 180 ^ @ - angleBDC - angleCBD = 180 ^ @ - 90 ^ @ - x ^ @ = (90 -x) ^ @ Benzer şekilde, angleACD = x ^ @. Şimdi, DeltaBCD ve DeltaACD'de, açı CBD = açı ACD ve açı BDC = açıADC. Yani, AA Benzerlik Kriterleri ile DeltaBCD ~ = DeltaACD. Benzer şekilde, DeltaBCD ~ = DeltaABC'yi bulabi