Cevap:
Çemberin Denklemi
Açıklama:
Bir dairenin merkez ile denklemi
veya
Gibi
ve tek bir çözüme sahip olmamız gerektiğinden, bu ikinci dereceden denklemin ayırt edici olması gerekir.
Bu nedenle,
ve
Merkezli (6, 7) ve 4'lü bir çemberin denkleminin standart şekli nedir?
(x-6) ^ 2 + (y-7) ^ 2 = 2 ^ 2 Bir dairenin merkez (h, k) ve yarıçapı r ile denkleminin standart şekli: (xh) ^ 2 + (yk) ^ 2 = r ^ 2 grafiği {((x-6) ^ 2 + (y-7) ^ 2-2 ^ 2) ((x-6) ^ 2 + (y-7) ^ 2-0.025) = 0 [ -6.71, 18.6, -1.64, 11.02]}
Bir dairenin merkezi olan bir çemberin denkleminin standart şekli nedir (-15,32) ve noktadan (-18,21) geçer?
(x + 15) ^ 2 + (y-32) ^ 2 = 130 (a, b) 'de ortalanan ve r yarıçapı olan bir dairenin standart formu (xa) ^ 2 + (yb) ^ 2 = r ^ 2'dir. . Dolayısıyla bu durumda merkezimiz var, ancak yarıçapı bulmamız gerekiyor ve bunu merkezden verilen noktaya kadar olan mesafeyi bularak yapabiliriz: d ((- - 15,32); (- 18,21)) = sqrt ((-18 - (- 15)) ^ 2+ (21-32) ^ 2) = sqrt130 Bu nedenle dairenin denklemi (x + 15) ^ 2 + (y-32) ^ 2 = 130
Bir çemberin y = 1/3x +7 çizgisine düşen ve (3, 7) ve (7, 1) çizgisinden geçen bir merkezi vardır. Çemberin denklemi nedir?
(x-19) ^ 2 + (y-40/3) ^ 2 = 2665/9 Verilen iki noktadan (3, 7) ve (7, 1) denklemleri kurabileceğiz (xh) ^ 2 + (yk) ^ 2 = r ^ 2 (3-s) ^ 2 + (7-k) ^ 2 = r ^ 2 "" (3, 7) ve (xh) ^ 2 + (yk) ^ 2 kullanarak ilk denklem = r ^ 2 (7-h) ^ 2 + (1-k) ^ 2 = r ^ 2 "" (7, 1) kullanarak ikinci denklem ancak r ^ 2 = r ^ 2 bu nedenle birinci ve ikinci denklemleri eşitleyebiliriz ( 3-h) ^ 2 + (7-k) ^ 2 = (7-h) ^ 2 + (1-k) ^ 2 ve bu h-3k = -2 "" üçüncü denklemine basitleştirilecektir ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Merkez (h, k), y = 1 / 3x + 7 çizgisinden geçerek k denklemini elde