Cevap:
Açıklama:
Büyük tamsayı olsun
Sonra söylendi:
# (n-1) n = 15n + 80 #
çıkarmak
# (n-16) n = 80 #
Bu yüzden bir çift faktör arıyoruz
Çift
bundan dolayı
Yani iki ardışık tam sayı
İki ardışık garip tamsayının ürünü, küçük tamsayının 15 katından 22 kat daha azdır. Tamsayılar nelerdir?
İki tamsayı 11 ve 13'tür. Eğer x daha küçük bir tamsayıyı temsil ediyorsa, daha büyük tamsayı x + 2'dir, tamsayılar ardışık ve 2+ bir tek tamsayı sonraki tek tamsayıyı verir. Söz konusu kelimelerde açıklanan ilişkinin matematiksel bir formata dönüştürülmesi aşağıdakileri sağlar: (x) (x + 2) = 15x - 22 Daha küçük bir tamsayı bulmak için x için çözün x ^ 2 + 2x = 15x - 22 text {Sol el genişletin side} x ^ 2 -13x + 22 = 0 text {İkinci dereceden formata yeniden düzenle} (x-11) (x-2) = 0 metin {İkinci dereceden denkl
İki ardışık garip tamsayının çarpımı toplamın 8 katından 29 kat daha azdır. İki tam sayıyı bulun. Önce iki tamsayının en düşük olduğu eşleştirilmiş noktalar biçiminde cevap mı?
(13, 15) veya (1, 3) x ve x + 2'nin ardışık ardışık sayılar olmasına izin verin, daha sonra soruya göre (x) (x + 2) = 8 (x + x + 2) - 29 :. x ^ 2 + 2x = 8 (2x + 2) - 29: x ^ 2 + 2x = 16x + 16 - 29: x ^ 2 + 2x - 16x - 16 + 29 = 0:. x ^ 2-14x + 13 = 0:. x ^ 2 -x - 13x + 13 = 0:. x (x - 1) - 13 (x - 1) = 0:. (x - 13) (x - 1) = 0:. x = 13 veya 1 Şimdi, CASE I: x = 13:. x + 2 = 13 + 2 = 15:. Sayılar (13, 15). CASE II: x = 1:. x + 2 = 1 + 2 = 3: Sayılar (1, 3). Dolayısıyla, burada ortaya çıkan iki vaka olduğu için; sayılar çifti (13, 15) veya (1, 3) olabilir.
Küçük iki tamsayının ürünü, en büyük tamsayının 5 katından 5 kat daha azsa, ardışık 3 pozitif tamsayının en küçüğü nedir?
En küçük sayı x, ikinci ve üçüncü ise x + 1 ve x + 2 olsun. (X) (x + 1) = (5 (x + 2)) - 5 x ^ 2 + x = 5x + 10 - 5 x ^ 2 - 4x - 5 = 0 (x - 5) (x + 1) = 0 x = 5 ve-1 Sayıların pozitif olması gerektiğinden, en küçük sayı 5'tir.