İki ardışık garip tamsayının çarpımı toplamın 8 katından 29 kat daha azdır. İki tam sayıyı bulun. Önce iki tamsayının en düşük olduğu eşleştirilmiş noktalar biçiminde cevap mı?
(13, 15) veya (1, 3) x ve x + 2'nin ardışık ardışık sayılar olmasına izin verin, daha sonra soruya göre (x) (x + 2) = 8 (x + x + 2) - 29 :. x ^ 2 + 2x = 8 (2x + 2) - 29: x ^ 2 + 2x = 16x + 16 - 29: x ^ 2 + 2x - 16x - 16 + 29 = 0:. x ^ 2-14x + 13 = 0:. x ^ 2 -x - 13x + 13 = 0:. x (x - 1) - 13 (x - 1) = 0:. (x - 13) (x - 1) = 0:. x = 13 veya 1 Şimdi, CASE I: x = 13:. x + 2 = 13 + 2 = 15:. Sayılar (13, 15). CASE II: x = 1:. x + 2 = 1 + 2 = 3: Sayılar (1, 3). Dolayısıyla, burada ortaya çıkan iki vaka olduğu için; sayılar çifti (13, 15) veya (1, 3) olabilir.
İki ardışık iki tamsayının iki katı, üç katından 13 kat daha küçüktür, tamsayıları nasıl bulursunuz?
Tamsayılar 17 ve 19'dur. Her çeşit ardışık sayılarla uğraşmanın püf noktası, diğerlerini ifade etmek için en küçüğü kullanmaktır. Sizin durumunuzda, x tek bir sayı ise, ardışık tek sayı (x + 2) olacaktır, çünkü (x + 1) çift sayı olacaktır. Yani, iki sayının büyüklüğünü ikiye katlarsanız ve sonuca 13 eklerseniz, iki sayının üç katından daha büyük bir sayı elde edersiniz. Bu, 2 * underbrace ((x + 2)) _ (renkli (mavi) ("büyük sayı")) + 13 = 3 * underbrace (x) _ (renk (yeşil) ("küçük s
Küçük iki tamsayının ürünü en büyük tamsayının 5 katından 2 kat daha azsa, art arda 3 pozitif tamsayı olan orta tamsayı nedir?
8 '3 ardışık pozitif çift tamsayı' x olarak yazılabilir; x + 2; x + 4 İki küçük tamsayının çarpımı x * (x + 2) 'en büyük tamsayıdan 5 kat daha' 5 * (x +4):. x * (x + 2) = 5 * (x + 4) - 2 x ^ 2 + 2x = 5x + 20 - 2 x ^ 2 -3x-18 = 0 (x-6) (x + 3) = 0 Biz tamsayıların pozitif olduğu belirtildiği için negatif sonucu hariç tutabilir, yani x = 6 orta tamsayı 8