Cevap:
Açıklama:
Bu durumda:
Zincir kuralını kullanarak f (x) = sqrt (cote ^ (4x) özelliğini nasıl ayırt edersiniz?
F '(x) = (- 4e ^ (4x) csc ^ 2 (e ^ (4x)) (bebek yatağı (e ^ (4x))) ^ (- 1/2)) / 2 renk (beyaz) (f' (x)) = - (2e ^ (4x) csc ^ 2 (e ^ (4x))) / sqrt (karyola (e ^ (4x)) f (x) = sqrt (karyola (e ^ (4x))) renk (beyaz) (f (x)) = sqrt (g (x)) f '(x) = 1/2 * (g (x)) ^ (- 1/2) * g' (x) renk (beyaz ) (f '(x)) = (g' (x) (g (x)) ^ (- 1/2)) / 2 g (x) = karyola (e ^ (4x)) renk (beyaz) (g (x)) = karyola (h (x)) g '(x) = - h' (x) csc ^ 2 (s (x)) s (x) = e ^ (4x) renk (beyaz) (s (s) x)) = e ^ (j (x)) h'(x) = j '(x) e ^ (j (x)) j (x) = 4x j' (x) = 4 h '(x) = 4e ^ (4x) g '(x) = - 4e ^ (4x)
Sqrt (cos (x ^ 2 + 2)) + sqrt (cos ^ 2x + 2) 'yi nasıl ayırt edersiniz?
(dy) / (dx) = (xsen (x ^ 2 + 2) + sen (x + 2)) / (sqrtcos (x ^ 2 + 2) + sqrt (cos ^ 2 (x + 2))) (dy ) / (dx) = 1 / (2sqrtcos (x ^ 2 + 2) + sqrt (cos ^ 2 (x + 2))) * sen (x ^ 2 + 2) * 2x + 2sen (x + 2) (dy ) / (dx) = (2xsen (x ^ 2 + 2) + 2sen (x + 2)) / (2sqrtcos (x ^ 2 + 2) + sqrt (cos ^ 2 (x + 2))) (dy) / (dx) = (iptal2 (xsen (x ^ 2 + 2) + sen (x + 2))) / (iptal2sqrtcos (x ^ 2 + 2) + sqrt (cos ^ 2 (x + 2)))) (dy) / (dx) = (xsen (x ^ 2 + 2) + sen (x + 2)) / (sqrtcos (x ^ 2 + 2) + sqrt (cos ^ 2 (x + 2)))
Zincir kuralını kullanarak f (x) = sqrt (ln (1 / sqrt (xe ^ x))) öğesini nasıl ayırt edersiniz?
Sadece tekrar tekrar zincir kuralı. f '(x) = e ^ x (1 + x) / 4sqrt ((xe ^ x) / (1 (1 / sqrt (xe ^ x))) (xe ^ x) ^ 3)) f (x) = sqrt (ln (1 / sqrt (xe ^ x))) Tamam, bu zor olacak: f '(x) = (sqrt (ln (1 / sqrt (xe ^ x)))))' = = 1 / (2sqrt (ln (1 / sqrt (xe ^ x))))) * (ln (1 / sqrt (xe ^ x))) '= = 1 / (2sqrt (ln (1 / sqrt (xe ^ x))))) * 1 / (1 / sqrt (xe ^ x)) (1 / sqrt (xe ^ x)) '= = 1 / (2sqrt (ln (1 / sqrt (xe ^ x))))) * sqrt (xe ^ x) (1 / sqrt (xe ^ x)) '= = sqrt (xe ^ x) / (2sqrt (ln (1 / sqrt (xe ^ x))))) (1 / sqrt (xe ^ x))' = = sqrt (xe ^ x) / (2sqrt (ln (1 / sqrt (xe ^ x))))) ((xe ^ x) ^ -