(1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1)) div sqrt (a + 1) / ( (a-1) sqrt (a + 1) - (a + 1) sqrt (a-1)), a> 1?

(1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1)) div sqrt (a + 1) / ( (a-1) sqrt (a + 1) - (a + 1) sqrt (a-1)), a> 1?
Anonim

Cevap:

Büyük matematik biçimlendirme …

Açıklama:

#color (mavi) (((1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1))) / (sqrt (a 1) / ((a-1) sqrt (a + 1) - (a + 1) sqrt (a-1))) #

# = Renkli (kırmızı) (((1 / sqrt (a-1) + sqrt (a + 1)) / ((sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a-1)))) / (sqrt (a + 1) / (sqrt (a-1) cdot sqrt (a-1) cdot sqrt (a + 1) -sqrt (a + 1) cdot sqrt (a + 1) sqrt (a-1))) #

# = Rengi (mavi) (((1 / sqrt (a-1) + sqrt (a + 1)) / ((sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a-1)))) / (sqrt (a + 1) / (sqrt (a + 1) cdot sqrt (a-1) (sqrt (a-1) -sqrt (a + 1))) #

# = renk (kırmızı) ((1 / sqrt (a-1) + sqrt (a + 1)) / ((sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a-1))) xx (sqrt (a + 1) cdot sqrt (a-1) (sqrt (a-1) -sqrt (a + 1))) / sqrt (a + 1) #

# = renk (mavi) ((1 / sqrt (a-1) + sqrt (a + 1)) xx ((sqrt (a + 1) cdot sqrt (a-1)) / (sqrt (a-1) - sqrt (a + 1))) xx (iptal ((sqrt (a + 1)))) cdot sqrt (a-1) (sqrt (a-1) -sqrt (a + 1))) / cancelsqrt (a + 1)) #

# = renk (kırmızı) (((1 + sqrt (a + 1) cdot sqrt (a-1)) / (sqrt (a-1))) xx ((sqrt (a + 1) cdot sqrt (a-1)) / (sqrt (a-1) -sqrt (a + 1))) xx sqrt (a-1) cdot (sqrt (a-1) -sqrt (a + 1)) #

# = renk (mavi) (((1 + sqrt (a + 1) cdot sqrt (a-1)) / iptal (sqrt (a-1))) xx ((sqrt (a + 1) cdot iptal ((sqrt (a-1)))) / renk (kırmızı) (iptal (renkli (yeşil)) ((sqrt (a-1) -sqrt (a + 1))))) xx sqrt (a-1) cdot rengi (kırmızı) (rengi iptal et (yeşil) ((sqrt (a-1) -sqrt (a + 1))) #

# = color (red) (ul (bar (| color (mavi)) ((1 + sqrt (a + 1) cdot sqrt (a-1)) cdot) (sqrt ((a + 1)) (a-1)))) | #

Cevap:

#sqrt (a ^ 2-1) + a ^ 2-1 #

Açıklama:

İşleri büyük ölçüde basitleştirmek için kullanacağız # U ^ 2, a + 1 # ve # V ^ 2-1 # =, bize veren:

# (V ^ -1 + u) / (u ^ -1-v ^ 1) * (uv ^ 2-vu ^ 2) / u = ((v ^ -1 + u) (uv ^ 2-vu ^ 2)) / (u (u ^ -1-v ^ 1)) = (UV-u ^ 2 + (UV) ^ 2-vu ^ 3) / (1-UV ^ -1) = (UV (1 + uv) u ^ 2 (1 + uv)) / ((VU) / hac) = (uV (1 + uv) (VU)) / (VU) = uV (1 + uv) #

#uv (1 + uv) = UV + u ^ 2v ^ 2 = sqrt (a-1) sqrt (a + 1) +, (a-1), (a + 1) = sqrt (a ^ 2-1) + bir ^ 2-1 #