0'dan 2pi'ye kadar 2 sin x - 1 = 0'ı nasıl çözersiniz?

0'dan 2pi'ye kadar 2 sin x - 1 = 0'ı nasıl çözersiniz?
Anonim

Cevap:

#x = pi / 6, 5pi / 6 #

Açıklama:

1/ # 2sin (x) - 1 = 0 #

2/ # 2sin (x) = 1 #

3/ #sin (x) = 1/2 #

4/ #x = pi / 6, 5pi / 6 #

Cevap:

# x = pi / 6 veya (5pi) / 6 #

Açıklama:

# 2sin (x) -1 = 0 | + 1 #

# 2sin (x) = 1 |: 2 #

#sin (x) = 1/2 #

# x = arcsin (1/2) = pi / 6 veya (5pi) / 6 #

Cevap:

#, X = pi / 6, (5pi) / 6 #

Açıklama:

# 2sinx-1 = 0 #

# RArrsinx = 1/2 #

# "" sinx> 0 "dan sonra" ilk / ikinci kadranda x "

# rArrx = sin ^ -1 (1/2) = pi / 6larrcolor (mavi) "ilk kadran" #

# "veya" x = pi-pi / 6 = (5pi) / 6larrcolor (mavi) "ikinci kadran" #

# RArrx = pi / 6, (5pi) / 6to (0,2pi) #