Cevap:
Veya
Açıklama:
İlk önce, eğimi bulmak için çizgiyi eğim-kesişim biçimine dönüştürmemiz gerekir.
Doğrusal bir denklemin eğim-kesişme şekli:
Nerede
Problemde denklemi çözebiliriz.
Yani bu denklem için eğim
Bu çizgiye dik bir çizgi, çizgimizin negatif tersi olan bir eğime sahip olacaktır.
Şimdi dik eğri formülünü dik çizginin denklemini yazmak için kullanabiliriz:
Nokta eğim formülü şöyledir:
Nerede
Noktayı problemden ve hesapladığımız eğimden değiştirmek:
Ya da denklemi daha bilinen bir yamaç-kesişme formuna çözerek çözebiliriz.
Bir çizginin denklemi 2x + 3y - 7 = 0, bul: - (1) çizginin eğimi (2) verilen çizgiye dik ve çizginin kesişme noktasından geçen çizginin denklemi x-y + 2 = 0 ve 3x + y-10 = 0?
-3x + 2y-2 = 0 renk (beyaz) ("ddd") -> renk (beyaz) ("ddd") y = 3 / 2x + 1 İlk prensiplerin nasıl çalıştığını gösteren çok detaylı ilk bölüm. Bunlara bir kez alışıp kısayolları kullanarak çok daha az satır kullanacaksınız. color (blue) ("İlk denklemlerin kesişimini belirleyin") x-y + 2 = 0 "" ....... Denklem (1) 3x + y-10 = 0 "" .... Denklem ( 2) Eqn (1) 'in her iki tarafından -y + 2 = -x veren x'i çıkar. Her iki tarafı da (-1) + y-2 = + x "" .......... ile eşitle (1_a) ) Eqn (2) renkli (yeşil) (3 renk (kırmızı) (x) +
Noktadan (0, 2) geçen ve eğimi 3 olan bir çizgiye dik olan çizginin denklemi nedir?
Y = -1/3 x + 2> m_1 "ve" m_2 sonra m_1 degradelerine sahip 2 dikey çizgi için. m_2 = -1 burada 3 xx m = - 1 rArr m = -1/3 çizginin denklemi, y - b = m (x - a) gereklidir. m = -1/3 "ve (a, b) = (0, 2)" dolayısıyla y - 2 = -1/3 (x - 0) rArr y = -1/3 x + 2
Noktadan (10, 5) geçen ve denklemi y = 54x 2 olan çizgiye dik olan bir çizginin denklemi nedir?
Çizginin -1/54 eğim ve denklem (10,5) ile denklemi renkli (yeşil) (x + 54y = 280 y = 54x - 2 Eğim m = 54 Dik çizginin eğimi m_1 = 1 / -m = -1 / 54 Eğimin -1/54 eğim ve denklemden (10,5) geçmesi y - 5 = - (1/54) * (x - 10) 54y - 270 = -x + 10 x + 54y = 280