Cevap:
Açıklama:
İlk 10 dönem için formül:
Cevap:
110
(Sorunun bir Aritmetik İlerleme anlamına geldiğini varsayarak)
Açıklama:
Bu hakkı anlıyorsam (matematik gösterimi eksikliği onu belirsiz hale getirir!), Bu ilk terimiyle bir Aritmetik İlerleme
İlk toplamın formülü
Yerini alalım
Böylece cevap 110.
Cevap:
İlk toplam
Açıklama:
Aritmetik bir ilerlemenin birinci terimi verildiğinde
İşte
=
=
=
=
Geometrik bir serinin r _ ("th") terimi (2r + 1) cdot 2 ^ r'dir. Serinin ilk n teriminin toplamı nedir?
(4n-2) * 2 ^ n + 3 S = sum_ {r = 0} ^ n 2r * 2 ^ r + sum_ {r = 0} ^ n2 ^ r S = sum_ {r = 1} ^ nr * 2 ^ (r + 1) + (1 - 2 ^ {n + 1}) / (1 - 2) S = a_ {01} (1 - 2 ^ n) / (1- 2) + ... + a_ { 0n} (1 - 2 ^ {n- (n-1)}) / (1- 2) + 2 ^ {n + 1} - 1 1 * 2 ^ 2 + 1 * 2 ^ 3 + 1 * 2 ^ 4 + 1 * 2 ^ 3 + 1 * 2 ^ 4 + 1 * 2 ^ 4 S = sum_ {i = 0} ^ {n-1} 2 ^ {i + 2} (2 ^ (n - i) - 1) + 2 ^ {n + 1} - 1 S = 4 sum_ {i = 0} ^ {n-1} (2 ^ n - 2 ^ i) + 2 ^ {n + 1} - 1 S = 4 * 2 ^ n * n - 4 * (2 ^ n - 1) + 2 ^ {n + 1} - 1 S = (4n-2) * 2 ^ n + 3 S = 1 * 2 ^ 0 + 3 * 2 ^ doğrulayalım 1 + 5 * 2 ^ 2 + 7 * 2 ^ 3 + cdots S = 1 + 6 + 20 + 56 + cdots S (0) = 1 =
Bir GP'nin ilk dört teriminin toplamı 30'dur ve son dört terimin toplamı 960'dır. GP'nin ilk ve son terimi sırasıyla 2 ve 512 ise, ortak oranı bulun.
2root (3) 2. Söz konusu GP'nin ortak oranının (cr) r ve n ^ (th) teriminin son terim olduğunu varsayalım. Buna göre, GP'nin ilk terimi 2'dir.: "GP," {2,2r, 2r ^ 2,2r ^ 3, .., 2r ^ (n-4), 2r ^ (n-3) 'dir. , 2r ^ (n-2), 2r ^ (n-1)}. Verilen, 2 + 2r + 2r ^ 2 + 2r ^ 3 = 30 ... (yıldız ^ 1) ve, 2r ^ (n-4) + 2r ^ (n-3) + 2r ^ (n-2) + 2r ^ (n-1) = 960 ... (yıldız ^ 2). Ayrıca son terimin 512 olduğunu biliyoruz. r ^ (n-1) = 512 .................... (yıldız ^ 3). Şimdi, (yıldız ^ 2) rArr r ^ (n-4) (2 + 2r + 2r ^ 2 + 2r ^ 3) = 960, yani (r ^ (n-1)) / r ^ 3 (2 + 2r + 2r ^ 2 + 2 r ^ 3) = 960. :. (51
Geometrik bir dizinin ilk terimi 4 ve çarpan veya oran –2'dir. Dizinin ilk 5 teriminin toplamı nedir?
Birinci terim = a_1 = 4, ortak oran = r = -2 ve terim sayısı = n = 5 En n ye kadar olan geometrik serilerin toplamı S_n = (a_1 (1-r ^ n)) / (1-r ile verilir. ) S_n, n terimlerinin toplamı ise, n terimlerin sayısı, a_1 ilk terim, r ortak orandır. Burada a_1 = 4, n = 5 ve r = -2, S_5 = (4 (1 - (- 2) ^ 5)) / (1 - (- 2)) = (4 (1 - (- 32))) anlamına gelir. / (1 + 2) = (4 (1 + 32)) / 3 = (4 (33)) / 3 = 4 * 11 = 44 Dolayısıyla toplam 44