Bileşenler, aynı boyutlara sahip oldukları sürece ayrı ayrı eklenerek vektörler eklenebilir. İki vektör eklemek, size sonuçta bir vektör verir.
Sonuçta meydana gelen vektörün anlamı, vektörün temsil ettiği miktara bağlıdır. Hız değişikliği olan bir hız ekliyorsanız, yeni hızınızı elde edersiniz. 2 kuvvet ekliyorsanız, net bir kuvvet elde edersiniz.
Aynı büyüklükte fakat zıt yönlere sahip iki vektör ekliyorsanız, sonuç vektörünüz sıfır olur. Aynı yönde iki vektör ekliyorsanız, sonuç 2 büyüklüğün toplamı olan aynı büyüklükte olur.
Vektörler Lütfen Yardım (Vektör A + vektör B'nin yönü nedir?)
-63.425 ^ o Ölçeklendirilmemiştir Çizelgeye çizilmiş diyagram için üzgünüm ama umarım durumu daha iyi görmemize yardımcı olur. Soruda daha önce çalıştığınız gibi, vektör: A + B = 2i-4j, santimetre cinsinden. Yönü x ekseninden almak için açıya ihtiyacımız var. Eğer vektörü çizip bileşenlerine bölersek, yani 2.0i ve -4.0j'yi görürsek, açının basit trigonometri kullanılarak düzeltilebilmesi için dik açılı bir üçgen görürüz. Karşı taraf ve yan taraflarımız var. Trigonome
Vektör A = 125 m / s, batıdan 40 derece kuzeyde. B vektörü 185 m / s, batı yönünde 30 derece ve C vektörü 175 m / s 50 doğusundadır. A + B-C'yi vektör çözünürlük yöntemiyle nasıl buluyorsunuz?
Elde edilen vektör, 165.6 ° 'lik standart bir açıda 402.7m / s olacaktır. İlk olarak, her bir vektörü (burada standart biçimde verilen) dikdörtgen bileşenlere (x ve y) dönüştüreceksiniz. Ardından, x bileşenlerini bir araya getirip y bileşenlerini bir araya getireceksiniz. Bu size aradığınız cevabı verecek, fakat dikdörtgen şeklinde. Son olarak, sonucu standart forma dönüştürün. İşte nasıl: Dikdörtgen bileşenlere dönüşün A_x = 125 cos 140 ° = 125 (-0.766) = -95.76 m / s A_y = 125 sin 140 ° = 125 (0.643) = 80.35 m / s
Sıfır olmayan iki vektör A (vektör) ve B (vektör) arasındaki açının 120 (derece) ve sonuç olarak C (vektör) olmasına izin verin. O zaman aşağıdakilerden hangisi doğrudur?
Seçenek (b) bb A * bb B = abs bbA abs bbB çünkü cos (120 ^ o) = -1/2 abs bbA abs bbB bbC = bbA + bbB C ^ 2 = (bbA + bbB) * (bbA + bbB) = A ^ 2 + B ^ 2 + 2 bbA * bb B = A ^ 2 + B ^ 2 - abs bbA abs bbB qquad kare abs (bbA - bbB) ^ 2 = (bbA - bbB) * (bbA - bbB) = A ^ 2 + B ^ 2 - 2bbA * bbB = A ^ 2 + B ^ 2 + abs bbA abs bbB qquad üçgen abs (bbA - bbB) ^ 2 - C ^ 2 = üçgen - kare = 2 abs bbA abs bbB:. C ^ 2 lt abs (bbA - bbB) ^ 2, qquad bbA, bbB ne bb0:. abs bb C lt abs (bbA - bbB)