Cevap:
Üçgenin üç kenarının uzunluğu
Açıklama:
İsocelles üçgenin tabanı
Üçgenin alanını biliyoruz
Bacaklar
Üçgenin üç kenarının uzunluğu
Cevap:
Yanlar
Açıklama:
Yan uzunluğu
Üçgenin yüksekliği olsun
Üçgenin alanı
Üçgenin rakımı
Orta noktası
Gradyanı
Rakımın gradyanı
İrtifa denklemi
Denklemli daire
Bu dairenin rakımla kesişmesi üçüncü köşeyi verecektir.
Bu ikinci dereceden denklemi çözüyoruz
Puan
Uzunluğu
Bir ikizkenar üçgeninin iki köşesi (1, 2) ve (3, 1) 'dedir. Üçgenin alanı 12 ise, üçgenin kenarlarının uzunluğu nedir?
Üç tarafın ölçüsü: (2.2361, 10.7906, 10.7906) Uzunluk a = sqrt ((3-1) ^ 2 + (1-2) ^ 2) = sqrt 5 = 2.2361 Delta Alanı = 12:. h = (Alan) / (a / 2) = 12 / (2.2361 / 2) = 12 / 1.1181 = 10.7325 taraf b = sqrt ((a / 2) ^ 2 + s ^ 2) = sqrt ((1.1181) ^ 2 + (10.7325) ^ 2) b = 10.7906 Üçgen ikizkenar olduğundan, üçüncü taraf da = b = 10.7906 Üç tarafın ölçüsüdür (2.2361, 10.7906, 10.7906)
Bir ikizkenar üçgeninin iki köşesi (1, 2) ve (1, 7) 'dedir. Üçgenin alanı 64 ise, üçgenin kenarlarının uzunluğu nedir?
"Kenar uzunluğu" 25,722 ila 3 ondalık basamak "Taban uzunluğu" 5 Çalışmamı gösterme biçimime dikkat edin. Matematik kısmen iletişim ile ilgilidir! Delta ABC'nin soruyu sorduğu soruyu temsil etmesine izin verin AC ve BC taraflarının uzunluğunun s olmasına izin verin Dikey yüksekliğin h olmasına izin verin Alanın bir = 64 "birim" ^ 2 olsun A -> (x, y) -> ( 1,2) Let B -> (x, y) -> (1,7) '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ renk (mavi) ("AB uzunluğunu belirlemek için") renk (yeşil) (AB "" = "" y_2-y_1 "" =
Bir ikizkenar üçgeninin iki köşesi (1, 2) ve (3, 1) 'dedir. Üçgenin alanı 2 ise, üçgenin kenarlarının uzunluğu nedir?
Üçgenin yüksekliğini bulun ve Pisagor kullanın. H = (2A) / B üçgeninin formülünü hatırlayarak başlayın. A = 2 olduğunu biliyoruz, bu nedenle sorunun başlangıcı temeli bularak yanıtlanabilir. Verilen köşeler taban olarak adlandırdığımız bir tarafı üretebilir. XY düzlemindeki iki koordinat arasındaki mesafe sqrt ((X1-X2) ^ 2 + (Y1-Y2) ^ 2) formülüyle verilir. PlugX1 = 1, X2 = 3, Y1 = 2 ve Y2 = 1 olup sqrt ((- 2) ^ 2 + 1 ^ 2) veya sqrt (5) elde edin. Çalışmada radikalleri basitleştirmek zorunda olmadığınızdan, yükseklik 4 / sqrt (5) olur. Şimdi tarafı