Cevap:
Açıklama:
Eğer
bu nedenle
Bir sıfır olduğunu söylendi.
Bu nedenle,
Şimdi türevine bakalım.
Yukarıdan biliyoruz
Belirli bir radyoaktif maddenin yarı ömrü 75 gündür. Malzemenin ilk miktarı 381 kg kütleye sahiptir. Bu malzemenin çürümesini modelleyen ve 15 gün sonra ne kadar radyoaktif madde kaldığını gösteren üstel bir işlevi nasıl yazıyorsunuz?
Yarı ömür: y = x * (1/2) ^ t ilk miktar olarak x, t "süre" / "yarı ömür", y ise son miktar olarak. Cevabı bulmak için aşağıdaki formülü takın: y = 381 * (1/2) ^ (15/75) => y = 381 * 0.87055056329 => y = 331.679764616 Cevap yaklaşık 331.68
Belirli bir radyoaktif maddenin yarı ömrü 85 gündür. Malzemenin ilk miktarı 801 kg'lık bir kütleye sahiptir. Bu malzemenin çürümesini modelleyen üstel bir işlevi ve 10 gün sonra ne kadar radyoaktif madde kaldığını nasıl yazıyorsunuz?
M_0 = "İlk kütle" = 801kg "" t = 0 m (t) = "t" kütlesinde "" Üstel fonksiyon ", m (t) = m_0 * e ^ (kt) ... (1) "burada" k = "sabit" "Yarı ömür" = 85 gün => m (85) = m_0 / 2 Şimdi t = 85 gün sonra m (85) = m_0 * e ^ (85k) => m_0 / 2 = m_0 * e ^ (85k) => e ^ k = (1/2) ^ (1/85) = 2 ^ (- 1/85) m_0 ve e ^ k değerlerini (1) içine koyarak m (t) değerini alırız = 801 * 2 ^ (- t / 85) Bu, üstel biçimde m (t) = 801 * e ^ (- (tlog2) / 85) olarak da yazılabilen bir işlevdir. 10 gün m (10) = 801 * 2
Vektör A, 10 büyüklüğüne sahiptir ve pozitif x yönünde noktalara sahiptir. Vektör B'nin büyüklüğü 15'tir ve pozitif x ekseni ile 34 derecelik bir açı yapar. A - B'nin büyüklüğü nedir?
8.7343 birim. AB = A + (- B) = 10 / _0 ^ @ - 15 / _34 ^ @ = sqrt ((10-15cos34 ^ @) ^ 2+ (15sin34 ^ @) ^ 2) / _ tan ^ (- 1) ((- 15sin34 ^ @) / (10-15cos34 ^ @)) = 8.7343 / _73.808 ^ @. Dolayısıyla, büyüklüğü sadece 8.7343 birimdir.